Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 815: 152744, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979225

RESUMO

Nitrous oxide (N2O) emissions are highly variable in space and time due to the complex interplay between soil, management practices and weather conditions. Micrometeorological techniques integrate emissions over large areas at high temporal resolution. This allows identification of causes of intra- and inter-annual variability of N2O emissions and development of robust emission factors (EF). Here, we investigated factors responsible for variability in N2O emissions during growing and non-growing seasons of corn and soybeans grown in an imperfectly drained silt loam soil, in Ontario, Canada. We used quasi-continuously (at half-hourly to hourly intervals) N2O fluxes measured via the flux-gradient technique over 11 years for corn and 5 years for soybeans and evaluated the uncertainty of default IPCC and Canada-specific EFs. In the growing season, emissions were controlled by soil nitrate content, soil moisture and temperature in the fertilized corn, while moisture and temperature regulated N2O emissions in the unfertilized soybeans. In the non-growing season, nitrogen (N) input from the crop residue did not affect the emissions, pointing to freeze-thaw cycles as mechanisms for enhanced N2O emissions. The non-growing season contribution to annual emissions was 38% in corn and 43% in soybeans. On average, annual emissions were 2.6-fold higher in corn than soybeans. Observed mean N2O EFs were 0.84% (0.12-2.02%) for growing season and 1.69% (0.29-7.32%) for yearly emissions. The growing season EF derived from long-term N2O emissions was 0.9 ± 0.14%. The interannual variability in N2O emissions and EFs can be attributed to management practices and annual weather variability. The default IPCC approach based on overall N input had poorer performance in predicting annual N2O emissions compared to the current Canadian methodology, which includes management and environmental factor in addition to N inputs. The observed emissions were further evaluated with a newly developed growing season N2O emission prediction approach for Canada. However, performance of the approach was poorer than IPCC or the current national Canadian approach. Additional tests of the new national methodology are recommended as well as consideration of non-growing season emissions.


Assuntos
Glycine max , Zea mays , Agricultura , Clima Frio , Fertilizantes/análise , Óxido Nitroso/análise , Ontário , Solo , Tempo (Meteorologia)
2.
Glob Chang Biol ; 22(3): 1244-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26491961

RESUMO

Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2 O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3-year field experiment with a perennial grass-legume mixture and an annual corn monoculture. Given that N2 O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2 O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2 O emissions increased tenfold for the perennial after ploughing. The percentage of N2 O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2 O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2 O emissions depending on environmental variables. The number of freeze-thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2 O emissions of perennial crops deserve further research attention and must be considered in future land-use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2 O emissions.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Produtos Agrícolas/metabolismo , Monitoramento Ambiental , Fertilizantes/análise , Óxido Nitroso/análise , Clima , Fabaceae/metabolismo , Esterco , Óxido Nitroso/metabolismo , Ontário , Poaceae/metabolismo , Estações do Ano , Solo/química , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...