Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39062471

RESUMO

Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24- cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs' production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Células-Tronco Neoplásicas , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Estresse Mecânico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Regulação Neoplásica da Expressão Gênica , Fenótipo , Antígeno CD24/metabolismo , Antígeno CD24/genética
2.
Pharmaceutics ; 15(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242792

RESUMO

Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20-100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.

3.
J Inorg Biochem ; 240: 112110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596265

RESUMO

Nine ruthenium CNC pincer complexes (1-9) were tested for anticancer activity in cell culture under both dark and light conditions. These complexes included varied CNC pincer ligands including OH, OMe, or Me substituents on the pyridyl ring and wingtip N-heterocyclic carbene (NHC) groups which varied as methyl (Me), phenyl (Ph), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp). The supporting ligands included acetonitrile, Cl, and 2,2'-bipyridine (bpy) donors. The synthesis of complexes 8 and 9 is described herein and are fully characterized by spectroscopic (1H NMR, IR, UV-Vis, MS) and analytical techniques. Single crystal X-ray diffraction results are reported herein for 8 and 9. The other complexes (1-7) are reported elsewhere. The four most lipophilic ruthenium complexes (6, 7, 8, and 9) showed the best activity vs. MCF7 cancer cells with complexes 6 and 9 showing cytotoxicity and complex 7 and 8 showing light activated photocytotoxicity. The distribution of these compounds between octanol and water is reported as log(Do/w) values, and increasing log(Do/w) values correlate roughly with improved activity vs. cancer cells. Overall, lipophilic wingtip groups (e.g. Ph, Mes, Dipp) on the NHC ring and a lower cationic charge (1+ vs. 2+) appears to be beneficial for improved anticancer activity.


Assuntos
Rutênio , Humanos , Rutênio/química , Ligantes , Espectroscopia de Ressonância Magnética
4.
Biochem Biophys Res Commun ; 632: 173-180, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36209586

RESUMO

The presence of circulating cancer cells in the bloodstream is positively correlated with metastasis. We hypothesize that fluid shear stress (FSS) occurring during circulation alters mitochondrial function, enhancing metastatic behaviors of cancer cells. MCF7 and MDA-MB-231 human breast cancer cells subjected to FSS exponentially increased proliferation. Notably, FSS-treated cells consumed more oxygen but were resistant to uncoupler-mediated ATP loss. We found that exposure to FSS downregulated the F1FO ATP synthase c-subunit and overexpression of the c-subunit arrested cancer cell migration. Approaches that regulate c-subunit abundance may reduce the likelihood of breast cancer metastasis.


Assuntos
Neoplasias da Mama , ATPases Mitocondriais Próton-Translocadoras , Humanos , Feminino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação para Baixo , Trifosfato de Adenosina , Proliferação de Células , Oxigênio
5.
Photochem Photobiol ; 98(1): 102-116, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411308

RESUMO

We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 µM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.


Assuntos
Neoplasias da Mama , Rutênio , Feminino , Humanos , Ligantes , Fenantrolinas , Rutênio/química , Compostos de Rutênio
6.
Cells Tissues Organs ; 211(3): 282-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34077929

RESUMO

Most cancer deaths are caused by secondary metastasized tumors. The cells that spread these tumors are known as circulating tumor cells (CTCs). They exist in a dynamic environment, including exposure to fluid shear stress (FSS) that makes them susceptible to reactive oxygen species (ROS) generation. There are questions about the similarities of CTCs to cancer stem cells (CSCs) and whether the stem cell-like characteristics of CTCs allow them to proliferate and spread despite the biophysical obstacles during the metastatic process. One of those qualities is the ability to undergo the epithelial-to-mesenchymal transition (EMT). Here, MDA-MB-231 and MCF7 were modeled as CTCs by prolonged exposure to FSS using a spinner flask. They were tested for ROS generation, CSC, EMT, and Hippo pathway gene and protein markers using qRT-PCR and flow cytometry. MDA-MB-231 did not show significant changes in CSC markers, but did show significant changes in ROS, EMT, and Hippo markers (p < 0.05). Similarly, MCF7 showed significant changes in ROS and EMT markers (p < 0.05). Furthermore, both cell lines demonstrated the reverse mesenchymal-to-epithelial transition signature when allowed to recover after FSS. These results suggest that the degree of their stemness or aggressiveness affects their responses to externally applied biophysical forces and demonstrates a potential link between mechanotransduction, the Hippo pathway, and the induction of EMT in breast cancer cells.


Assuntos
Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Humanos , Mecanotransdução Celular , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708855

RESUMO

Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.


Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...