Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(4): 953-969, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36544433

RESUMO

Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.


Assuntos
Prótese Vascular , Engenharia Tecidual , Materiais Biocompatíveis
2.
PLoS Pathog ; 16(1): e1008211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971995

RESUMO

The decades-long global trend of urbanization has led to a population that spends increasing amounts of time indoors. Exposure to microbes in buildings, and specifically in dust, is thus also increasing, and has been linked to various health outcomes and to antibiotic resistance genes (ARGs). These are most efficiently screened using DNA sequencing, but this method does not determine which microbes are viable, nor does it reveal whether their ARGs can actually disseminate to other microbes. We have thus performed the first study to: 1) examine the potential for ARG dissemination in indoor dust microbial communities, and 2) validate the presence of detected mobile ARGs in viable dust bacteria. Specifically, we integrated 166 dust metagenomes from 43 different buildings. Sequences were assembled, annotated, and screened for potential integrons, transposons, plasmids, and associated ARGs. The same dust samples were further investigated using cultivation and isolate genome and plasmid sequencing. Potential ARGs were detected in dust isolate genomes, and we confirmed their placement on mobile genetic elements using long-read sequencing. We found 183 ARGs, of which 52 were potentially mobile (associated with a putative plasmid, transposon or integron). One dust isolate related to Staphylococcus equorum proved to contain a plasmid carrying an ARG that was detected metagenomically and confirmed through whole genome and plasmid sequencing. This study thus highlights the power of combining cultivation with metagenomics to assess the risk of potentially mobile ARGs for public health.


Assuntos
Poluição do Ar em Ambientes Fechados , Resistência Microbiana a Medicamentos/genética , Poeira , Genes Bacterianos , Microbiota/genética , Microbiologia Ambiental , Transferência Genética Horizontal , Genoma Bacteriano , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...