Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7040, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923766

RESUMO

Large-scale quantum computers have the potential to hold computational capabilities beyond conventional computers. However, the physical qubits are prone to noise which must be corrected in order to perform fault-tolerant quantum computations. Quantum Error Correction (QEC) provides the path for realizing such computations. QEC generates a continuous stream of data that decoders must process at the rate it is received, which can be as fast as 1 µs per QEC round in superconducting quantum computers. If the decoder infrastructure cannot keep up, a data backlog problem is encountered and the computation runs exponentially slower. Today's leading approaches to quantum error correction are not scalable as existing decoders typically run slower as the problem size is increased, inevitably hitting the backlog problem. Here, we show how to parallelize decoding to achieve almost arbitrary speed, removing this roadblock to scalability. Our parallelization requires some classical feed forward decisions to be delayed, slowing-down the logical clock speed. However, the slow-down is now only polynomial in the size of the QEC code, averting the exponential slowdown. We numerically demonstrate our parallel decoder for the surface code, showing no noticeable reduction in logical fidelity compared to previous decoders and demonstrating the predicted speedup.

2.
Sci Rep ; 11(1): 2027, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479290

RESUMO

We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes. For simplicity, however, we focus on the three-dimensional toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold. We also numerically benchmark the performance of the decoder in the setting with measurement errors using various noise models. We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model. Our work constitutes a step towards finding simple and high-performance decoding strategies for a wide range of quantum low-density parity-check codes.

3.
Phys Rev Lett ; 119(12): 120505, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341645

RESUMO

A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.

4.
Nat Commun ; 7: 12302, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470619

RESUMO

The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

5.
Phys Rev Lett ; 115(2): 020502, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207455

RESUMO

Single photons, manipulated using integrated linear optics, constitute a promising platform for universal quantum computation. A series of increasingly efficient proposals have shown linear-optical quantum computing to be formally scalable. However, existing schemes typically require extensive adaptive switching, which is experimentally challenging and noisy, thousands of photon sources per renormalized qubit, and/or large quantum memories for repeat-until-success strategies. Our work overcomes all these problems. We present a scheme to construct a cluster state universal for quantum computation, which uses no adaptive switching, no large memories, and which is at least an order of magnitude more resource efficient than previous passive schemes. Unlike previous proposals, it is constructed entirely from loss-detecting gates and offers a robustness to photon loss. Even without the use of an active loss-tolerant encoding, our scheme naturally tolerates a total loss rate ∼1.6% in the photons detected in the gates. This scheme uses only 3 Greenberger-Horne-Zeilinger states as a resource, together with a passive linear-optical network. We fully describe and model the iterative process of cluster generation, including photon loss and gate failure. This demonstrates that building a linear-optical quantum computer needs to be less challenging than previously thought.

6.
Phys Rev Lett ; 112(14): 140505, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765935

RESUMO

Measurement-based quantum computation (MBQC) is a model of quantum computation, in which computation proceeds via adaptive single qubit measurements on a multiqubit quantum state. It is computationally equivalent to the circuit model. Unlike the circuit model, however, its classical analog is little studied. Here we present a classical analog of MBQC whose computational complexity presents a rich structure. To do so, we identify uniform families of quantum computations [refining the circuits introduced by Bremner Proc. R. Soc. A 467, 459 (2010)] whose output is likely hard to exactly simulate (sample) classically. We demonstrate that these circuit families can be efficiently implemented in the MBQC model without adaptive measurement and, thus, can be achieved in a classical analog of MBQC whose resource state is a probability distribution which has been created quantum mechanically. Such states (by definition) violate no Bell inequality, but, if widely held beliefs about computational complexity are true, they, nevertheless, exhibit nonclassicality when used as a computational resource­an imprint of their quantum origin.

7.
Phys Rev Lett ; 107(12): 120402, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026758

RESUMO

One of the most striking nonclassical features of quantum mechanics is in the correlations it predicts between spatially separated measurements. In local hidden variable theories, correlations are constrained by Bell inequalities, but quantum correlations violate these. However, experimental imperfections lead to loopholes whereby LHV correlations are no longer constrained by Bell inequalities, and violations can be described by LHV theories. For example, loopholes can emerge through selective detection of events. In this Letter, we introduce a clean, operational picture of multiparty Bell tests, and show that there exists a nontrivial form of loophole-free postselection. Surprisingly, the same postselection can enhance quantum correlations, and unlock a connection between nonclassical correlations and nonclassical computation.

9.
Phys Rev Lett ; 104(3): 030503, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366637

RESUMO

Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.

10.
Phys Rev Lett ; 102(5): 050502, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257493

RESUMO

We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework, the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based classical computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...