Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39054006

RESUMO

Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.


Assuntos
Reparo do DNA , Ouro , Mercúrio , Mineração , Polimorfismo de Nucleotídeo Único , Humanos , Reparo do DNA/genética , Mercúrio/toxicidade , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Colômbia , Glutationa Transferase/genética , Testes para Micronúcleos , Exposição Ambiental/efeitos adversos , Adulto Jovem
2.
Sci Total Environ ; 901: 165789, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37499817

RESUMO

The Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36141477

RESUMO

Oil exploitation, drilling, transportation, and processing in refineries produces a complex mixture of chemical compounds, including polycyclic aromatic hydrocarbons (PAHs), which may affect the health of populations living in the zone of influence of mining activities (PZOI). Thus, to better understand the effects of oil exploitation activities on cytogenetic endpoint frequency, we conducted a biomonitoring study in the Hitnü indigenous populations from eastern Colombia by using the cytokinesis micronucleus cytome assay (CBMN-cyt). PAH exposure was also measured by determine urine 1-hydroxypyrene (1-OHP) using HPLC. We also evaluated the relationship between DNA damage and 1-OHP levels in the oil exploitation area, as well as the modulating effects of community health factors, such as Chagas infection; nutritional status; and consumption of traditional hallucinogens, tobacco, and wine from traditional palms. The frequencies of the CBMN-cyt assay parameters were comparable between PZOI and Hitnü populations outside the zone of influence of mining activities (POZOI); however, a non-significant incremental trend among individuals from the PZOI for most of the DNA damage parameters was also observed. In agreement with these observations, levels of 1-OHP were also identified as a risk factor for increased MN frequency (PR = 1.20) compared to POZOI (PR = 0.7). Proximity to oil exploitation areas also constituted a risk factor for elevated frequencies of nucleoplasmic bridges (NPBs) and APOP-type cell death. Our results suggest that genetic instability and its potential effects among Hitnü individuals from PZOI and POZOI could be modulated by the combination of multiple factors, including the levels of 1-OHP in urine, malnutrition, and some traditional consumption practices.


Assuntos
Alucinógenos , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Colômbia/epidemiologia , Dano ao DNA , Humanos , Testes para Micronúcleos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA