Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(13): 8646-8656, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936834

RESUMO

Laves phase alloys possess unique thermal and electrical conduction properties, yet the factors governing phase stability in these systems remain an open question. The influence of phonons in particular has been broadly overlooked. Here, we investigate the UCo2x Ni2(1-x) chemical space using density functional theory, which offers a unique opportunity to explore the factors influencing Laves phase stability as all three primary Laves phases (C14, C15, C36) can be stabilized by changing the ratio of Co to Ni. Calculations of the thermodynamic and dynamical stability of pure UCo2 and UNi2 in each of three primary Laves phases confirm the stability of experimentally known Laves phases for UNi2 and UCo2. A decrease in bonding strength is identified in UNi2 compared to UCo2, aligned with redshifts observed in the UNi2 phonon density of states and a decoupling of the U and Ni vibrational modes. Phonon calculations of C14 UCo2 reveal dynamical instabilities. Efforts to remove the unstable mode at the Γ point in UCo2 via atomic displacements break the symmetry of the C14 phase, revealing a lower energy P2/c structure. Vibrational contributions to the free energy were calculated and did not change the thermodynamically stable Laves phase below 1000 K. The temperature-dependent free energies of single phase UCo2 and UNi2 were used to interpolate the relative stability of ternary UCo2x Ni2(1-x) in each of the three Laves phases at varying temperatures and stoichiometries. The ternary C36 phase is only predicted to be thermodynamically stable over a narrow stoichiometric range below 600 K.

2.
Phys Rev B ; 100(9)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33553858

RESUMO

We have measured the room-temperature phonon spectrum of Mo-stabilized γ-U. The dispersion curves show unusual softening near the H point, q = [1/2, 1/2, 1/2], which may derive from the metastability of the γ-U phase or from strong electron-phonon coupling. Near the zone center, the dispersion curves agree well with theory, though significant differences are observed away from the zone center. The experimental phonon density of states is shifted to higher energy compared to theory and high-temperature neutron scattering. The elastic constants of γ-UMo are similar to those of body-centered cubic elemental metals.

3.
J Phys Condens Matter ; 30(3): 035601, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29239302

RESUMO

We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P = 2.35 GPa. This work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, is unlikely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...