Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stat Med ; 42(13): 2257-2273, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36999745

RESUMO

Accurate and efficient detection of ovarian cancer at early stages is critical to ensure proper treatments for patients. Among the first-line modalities investigated in studies of early diagnosis are features distilled from protein mass spectra. This method, however, considers only a specific subset of spectral responses and ignores the interplay among protein expression levels, which can also contain diagnostic information. We propose a new modality that automatically searches protein mass spectra for discriminatory features by considering the self-similar nature of the spectra. Self-similarity is assessed by taking a wavelet decomposition of protein mass spectra and estimating the rate of level-wise decay in the energies of the resulting wavelet coefficients. Level-wise energies are estimated in a robust manner using distance variance, and rates are estimated locally via a rolling window approach. This results in a collection of rates that can be used to characterize the interplay among proteins, which can be indicative of cancer presence. Discriminatory descriptors are then selected from these evolutionary rates and used as classifying features. The proposed wavelet-based features are used in conjunction with features proposed in the existing literature for early stage diagnosis of ovarian cancer using two datasets published by the American National Cancer Institute. Including the wavelet-based features from the new modality results in improvements in diagnostic performance for early-stage ovarian cancer detection. This demonstrates the ability of the proposed modality to characterize new ovarian cancer diagnostic information.


Assuntos
Neoplasias Ovarianas , Análise de Ondaletas , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico , Diagnóstico Precoce , Algoritmos
2.
Sci Rep ; 12(1): 21928, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535997

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a common cognitive disorder affecting children. ADHD can interfere with educational, social, and emotional development, so early detection is essential for obtaining proper care. Standard ADHD diagnostic protocols rely heavily on subjective assessments of perceived behavior. An objective diagnostic measure would be a welcome development and potentially aid in accurately and efficiently diagnosing ADHD. Analysis of pupillary dynamics has been proposed as a promising alternative method of detecting affected individuals effectively. This study proposes a method based on the self-similarity of pupillary dynamics and assesses its strength as a potential diagnostic biomarker. Localized discriminatory features are developed in the wavelet domain and selected via a rolling window method to build classifiers. The application on a task-based pupil diameter time series dataset of children aged 10-12 years shows that the proposed method achieves greater than 78% accuracy in detecting ADHD. Comparing with a recent approach that constructs features in the original data domain, the proposed wavelet-based classifier achieves more accurate ADHD classification with fewer features. The findings suggest that the proposed diagnostic procedure involving interpretable wavelet-based self-similarity features of pupil diameter data can potentially aid in improving the efficacy of ADHD diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...