Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277364

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a formidable challenge to worldwide public health. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. We comprehensively investigated the impact of RBD mutations, including 6 variants of concern (VOC) or interest (Alpha, Beta, Gamma, Delta, Kappa and Omicron) and 33 common point mutations, on IgG recognition, Fc{gamma}R-engagement, and ACE2-binding inhibition in plasma from BNT162b2-vaccine recipients (two-weeks following second dose) and mild-to-moderate COVID-19 convalescent subjects using our custom bead-based 39-plex array. We observed that IgG-recognition and Fc{gamma}R-binding antibodies were most profoundly decreased against Beta and Omicron RBDs, as well as point mutations G446S, found in Omicron, and N501T, a key mutation found in animal adapted SARS-CoV-2 viruses. Measurement of RBD-ACE2 binding affinity via Biolayer Interferometry showed all VOC RBDs have enhanced affinity to human ACE2. Furthermore we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695), K26R (rs4646116) and S19P (rs73635825), have altered binding kinetics to the RBD of VOCs potentially affecting virus-host interaction and thereby host susceptibility.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255368

RESUMO

As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus; whether through infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure SARS-CoV-2 immunity, ideally with rapid turnaround and without the need for laboratory-based testing. Current rapid point-of-care (POC) tests measure antibodies (Ab) against the SARS-CoV-2 virus, however, these tests provide no information on whether the antibodies can neutralise virus infectivity and are potentially protective, especially against newly emerging variants of the virus. Neutralising Antibodies (NAb) are emerging as a strong correlate of protection, but most current NAb assays require many hours or days, samples of venous blood, and access to laboratory facilities, which is especially problematic in resource-limited settings. We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibodies from whole blood, with a result that can be determined by eye (semi-quantitative) or on a small instrument (quantitative), and results show high correlation with microneutralisation assays. This assay also provides a measure of total anti-RBD antibody, thereby providing evidence of exposure to SARS-CoV-2, regardless of whether NAb are present in the sample. By testing samples from immunised macaques, we demonstrate that this test is equally applicable for use with animal samples, and we show that this assay is readily adaptable to test for immunity to newly emerging SARS-CoV-2 variants. Accordingly, the COVID-19 NAb-test test described here can provide a rapid readout of immunity to SARS-CoV-2 at the point of care.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248143

RESUMO

The capacity of antibodies to engage with innate and adaptive immune cells via the Fc region is important in preventing and controlling many infectious diseases, and is likely critical in SARS-CoV-2 infection. The evolution of such antibodies during convalescence from COVID-19 is largely unknown. We developed novel assays to measure Fc-dependent antibody functions against SARS-CoV-2 spike (S)-expressing cells in serial samples from a cohort of 53 subjects primarily with mild-moderate COVID-19, out to a maximum of 149 days post-infection. We found that S-specific antibodies capable of engaging dimeric Fc{gamma}RIIa and Fc{gamma}RIIIa decayed linearly over time. S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declined linearly as well, in line with the decay of S-specific IgG. Although there was significant decay in S-specific plasma ADCC and ADP activity, they remained readily detectable by all assays in 94% of our cohort at the last timepoint studied, in contrast with neutralisation activity which was only detectable in 70% of our cohort by the last timepoint. Our results suggest that Fc effector functions such as ADCC and ADP could contribute to the durability of SARS-CoV-2 immunity, particularly late in convalescence when neutralising antibodies have waned. Understanding the protective potential of antibody Fc effector functions is critical for defining the durability of immunity generated by infection or vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...