Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685280

RESUMO

Versatile substituted electron-deficient trichloromethylarenes can easily be synthesized and combined with a Safranine O/triarylalkylborate salt to form a highly efficient three-component photo-initiation system that starts free radical polymerization to finally form holographic gratings with a single-pulsed laser. The mechanism of this photo-initiation most likely relies on an electron transfer from the borate salt into the semi-occupied HOMO of the excited dye molecule Safranine O, which after fragmentation generates an initiating alkyl radical and longer-lived dye radical species. This dye radical is most probably oxidized by the newly introduced trichloromethylarene derivative as an electron acceptor. The two generated radicals from one absorbed photon initiate the photopolymerization and form index gratings in a suitable holographic recording material. This process is purely photonic and does not require further non-photonic post treatments.

2.
Polymers (Basel) ; 9(10)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30965774

RESUMO

Holographic photopolymers are a new technology to create passive diffractive optical elements by a pure laser interference recording. In this review, we explain the chemistry concepts of light harvesting in an interference pattern and the subsequent grating formation as chemical response. Using the example of the newly developed Bayfol® HX film we discuss the reaction-diffusion driven photo-polymerization process for an index modulation formation to create volume phase gratings. Further we elucidate the selection of monomer chemistry and discuss details of the recording conditions based on the concept of exposure dosage and exposure time. Influences ranging from high dosage recording to low power recording are explained and how to affect the desired diffraction efficiency. Finally, we outline and demonstrate the process to mass manufacturing of volume phase gratings.

3.
Chemistry ; 20(46): 15102-7, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25256085

RESUMO

Optimization of holography recording in photopolymers was studied from the point of view of a quite general process, that is, the photogeneration of radicals. On the basis of a dye/coinitiator photoinitiating system, the effect of primary events and their relative efficiency was investigated with respect to the final overall properties, such as the diffraction efficiency. Quenching of the dye excited states by the borate salts coinitiators exhibits important differences depending on the dye used (Rose Bengal or Safranine O). Keeping in mind that both singlet and triplet states of the dyes can react, and taking into account the viscosity of the matrix, a method to evaluate the overall quantum yield of radicals released is proposed. It is found that this quantum yield well correlates with the maximum rate of photopolymerization. More interestingly, the dose required to obtain a given diffraction efficiency was found to be also governed by the radical quantum yield, showing that the final property is directly governed by primary events. This shed some light on the efficiency of photochemical pathway to generate radicals for use in organic or polymer areas.

4.
Opt Express ; 22(8): 9820-38, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787867

RESUMO

A novel directional backlight system based on volume-holographic optical elements (VHOEs) is demonstrated for time-sequential autostereoscopic three-dimensional (3-D) flat-panel displays. Here, VHOEs are employed to control the direction of light for a time-multiplexed display for each of the left and the right view. Those VHOEs are fabricated by recording interference patterns between collimated reference beams and diverging object beams for each of the left and right eyes on the volume holographic recording material. For this, self-developing photopolymer films (Bayfol® HX) were used, since those simplify the manufacturing process of VHOEs substantially. Here, the directional lights are similar to the collimated reference beams that were used to record the VHOEs and create two diffracted beams similar to the object beams used for recording the VHOEs. Then, those diffracted beams read the left and right images alternately shown on the LCD panel and form two converging viewing zones in front of the user's eyes. By this he can perceive the 3-D image. Theoretical predictions and experimental results are presented and the performance of the developed prototype is shown.

5.
Angew Chem Int Ed Engl ; 50(20): 4552-73, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21538730

RESUMO

Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed.

6.
Opt Express ; 19(27): 26325-42, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274217

RESUMO

The development of suitable recording media for applications such as holographic optical elements and holographic data storage are of significant research and commercial interest. In this paper, a photopolymer material developed by Bayer MaterialScience is examined using various optical techniques and then characterised using the Non-local Photo-polymerization Driven Diffusion model. This material demonstrates the capabilities of a new class of photopolymer offering high index modulation, full colour recording, high light sensitivity and environmental stability. One key result of this study is the material's high spatial frequency resolution, indicating a very low non-local effect, thus qualifying it as a very good storage medium.


Assuntos
Acrilamida/química , Acrilamida/efeitos da radiação , Modelos Químicos , Álcool de Polivinil/química , Álcool de Polivinil/efeitos da radiação , Cor , Simulação por Computador , Luz , Teste de Materiais , Refratometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...