Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(5): 1077-1086, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33979526

RESUMO

Octanoic acid is an industrially relevant compound with applications in antimicrobials or as a precursor for biofuels. Microbial biosynthesis through yeast is a promising alternative to current unsustainable production methods. To increase octanoic acid titers in Saccharomyces cerevisiae, we use a previously developed biosensor that is based on the octanoic acid responsive pPDR12 promotor coupled to GFP. We establish a biosensor strain amenable for high-throughput screening of an octanoic acid producer strain library. Through development, optimization, and execution of a high-throughput screening approach, we were able to detect two new genetic targets, KCS1 and FSH2, which increased octanoic acid titers through combined overexpression by about 55% compared to the parental strain. Neither target has yet been reported to be involved in fatty acid biosynthesis. The presented methodology can be employed to screen any genetic library and thereby more genes involved in improving octanoic acid production can be detected in the future.


Assuntos
Caprilatos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Proteases/genética , Técnicas Biossensoriais/métodos , Ácidos Graxos/biossíntese , Citometria de Fluxo/métodos , Expressão Gênica , Biblioteca Gênica , Proteínas de Fluorescência Verde/genética , Microrganismos Geneticamente Modificados , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
2.
Biotechnol Biofuels ; 12: 202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462926

RESUMO

BACKGROUND: Oleaginous yeasts are potent hosts for the renewable production of lipids and harbor great potential for derived products, such as biofuels. Several promising processes have been described that produce hydrocarbon drop-in biofuels based on fatty acid decarboxylation and fatty aldehyde decarbonylation. Unfortunately, besides fatty aldehyde toxicity and high reactivity, the most investigated enzyme, aldehyde-deformylating oxygenase, shows unfavorable catalytic properties which hindered high yields in previous metabolic engineering approaches. RESULTS: To demonstrate an alternative alkane production pathway for oleaginous yeasts, we describe the production of diesel-like, odd-chain alkanes and alkenes, by heterologously expressing a recently discovered light-driven oxidase from Chlorella variabilis (CvFAP) in Yarrowia lipolytica. Initial experiments showed that only strains engineered to have an increased pool of free fatty acids were susceptible to sufficient decarboxylation. Providing these strains with glucose and light in a synthetic medium resulted in titers of 10.9 mg/L of hydrocarbons. Using custom 3D printed labware for lighting bioreactors, and an automated pulsed glycerol fed-batch strategy, intracellular titers of 58.7 mg/L were achieved. The production of odd-numbered alkanes and alkenes with a length of 17 and 15 carbons shown in previous studies could be confirmed. CONCLUSIONS: Oleaginous yeasts such as Yarrowia lipolytica can transform renewable resources such as glycerol into fatty acids and lipids. By heterologously expressing a fatty acid photodecarboxylase from the algae Chlorella variabilis hydrocarbons were produced in several scales from microwell plate to 400 mL bioreactors. The lighting turned out to be a crucial factor in terms of growth and hydrocarbon production, therefore, the evaluation of different conditions was an important step towards a tailor-made process. In general, the developed bioprocess shows a route to the renewable production of hydrocarbons for a variety of applications ranging from being substrates for further enzymatic or chemical modification or as a drop-in biofuel blend.

3.
Microb Cell Fact ; 15(1): 127, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27455954

RESUMO

BACKGROUND: Baker's yeast, Saccharomyces cerevisiae, as one of the most often used workhorses in biotechnology has been developed into a huge family of application optimised strains in the last decades. Increasing numbers of strains render their characterisation highly challenging, even with the simple methods of growth-based analytics. Here we present a new sensor system for the automated, non-invasive and parallelisable monitoring of biomass in continuously shaken shake flask cultures, called CGQ ("cell growth quantifier"). The CGQ implements a dynamic approach of backscattered light measurement, allowing for efficient and accurate growth-based strain characterisation, as exemplarily demonstrated for the four most commonly used laboratory and industrial yeast strains, BY4741, W303-1A, CEN.PK2-1C and Ethanol Red. RESULTS: Growth experiments revealed distinct carbon source utilisation differences between the investigated S. cerevisiae strains. Phenomena such as diauxic shifts, morphological changes and oxygen limitations were clearly observable in the growth curves. A strictly monotonic non-linear correlation of OD600 and the CGQ's backscattered light intensities was found, with strain-to-strain as well as growth-phase related differences. The CGQ measurements showed high resolution, sensitivity and smoothness even below an OD600 of 0.2 and were furthermore characterised by low background noise and signal drift in combination with high reproducibility. CONCLUSIONS: With the CGQ, shake flask fermentations can be automatically monitored regarding biomass and growth rates with high resolution and parallelisation. This makes the CGQ a valuable tool for growth-based strain characterisation and development. The exceptionally high resolution allows for the identification of distinct metabolic differences and shifts as well as for morphologic changes. Applications that will benefit from that kind of automatized biomass monitoring include, amongst many others, the characterization of deregulated native or integrated heterologous pathways, the fast detection of co-fermentation as well as the realisation of rational and growth-data driven evolutionary engineering approaches.


Assuntos
Automação/métodos , Carbono/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Oxigênio/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(14): 5159-64, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706835

RESUMO

All known D-xylose transporters are competitively inhibited by D-glucose, which is one of the major reasons hampering simultaneous fermentation of D-glucose and D-xylose, two primary sugars present in lignocellulosic biomass. We have set up a yeast growth-based screening system for mutant D-xylose transporters that are insensitive to the presence of D-glucose. All of the identified variants had a mutation at either a conserved asparagine residue in transmembrane helix 8 or a threonine residue in transmembrane helix 5. According to a homology model of the yeast hexose transporter Gal2 deduced from the crystal structure of the D-xylose transporter XylE from Escherichia coli, both residues are found in the same region of the protein and are positioned slightly to the extracellular side of the central sugar-binding pocket. Therefore, it is likely that alterations sterically prevent D-glucose but not D-xylose from entering the pocket. In contrast, changing amino acids that are supposed to directly interact with the C6 hydroxymethyl group of D-glucose negatively affected transport of both D-glucose and D-xylose. Determination of kinetic properties of the mutant transporters revealed that Gal2-N376F had the highest affinity for D-xylose, along with a moderate transport velocity, and had completely lost the ability to transport hexoses. These transporter versions should prove valuable for glucose-xylose cofermentation in lignocellulosic hydrolysates by Saccharomyces cerevisiae and other biotechnologically relevant organisms. Moreover, our data contribute to the mechanistic understanding of sugar transport because the decisive role of the conserved asparagine residue for determining sugar specificity has not been recognized before.


Assuntos
Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Engenharia de Proteínas , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Transporte Biológico , Hidrólise , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...