Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(52): 20888-93, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19104050

RESUMO

Aminoglycoside ototoxicity has been related to a surprisingly large number of cellular structures and metabolic pathways. The finding that patients with mutations in mitochondrial rRNA are hypersusceptible to aminoglycoside-induced hearing loss has indicated a possible role for mitochondrial protein synthesis. To study the molecular interaction of aminoglycosides with eukaryotic ribosomes, we made use of the observation that the drug binding site is a distinct domain defined by the small subunit rRNA, and investigated drug susceptibility of bacterial hybrid ribosomes carrying various alleles of the eukaryotic decoding site. Compared to hybrid ribosomes with the A site of human cytosolic ribosomes, susceptibility of mitochondrial hybrid ribosomes to various aminoglycosides correlated with the relative cochleotoxicity of these drugs. Sequence alterations that correspond to the mitochondrial deafness mutations A1555G and C1494T increased drug-binding and rendered the ribosomal decoding site hypersusceptible to aminoglycoside-induced mistranslation and inhibition of protein synthesis. Our results provide experimental support for aminoglycoside-induced dysfunction of the mitochondrial ribosome. We propose a pathogenic mechanism in which interference of aminoglycosides with mitochondrial protein synthesis exacerbates the drugs' cochlear toxicity, playing a key role in sporadic dose-dependent and genetically inherited, aminoglycoside-induced deafness.


Assuntos
Aminoglicosídeos/efeitos adversos , Surdez/metabolismo , Mitocôndrias/metabolismo , Mycobacterium smegmatis/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Aminoglicosídeos/uso terapêutico , Surdez/induzido quimicamente , Surdez/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Mitocôndrias/genética , Mycobacterium smegmatis/genética , Mutação Puntual , Biossíntese de Proteínas/genética , RNA Ribossômico/genética , Ribossomos/genética
2.
Biochemistry ; 47(34): 8828-39, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18672904

RESUMO

Most of our understanding of ribosome function is based on experiments utilizing translational components from Escherichia coli. It is not clear to which extent the details of translation mechanisms derived from this single organism are true for all bacteria. Here we investigate translation factor-dependent reactions of initiation and elongation in a reconstituted translation system from a Gram-positive bacterium Mycobacterium smegmatis. This organism was chosen because mutations in rRNA have very different phenotypes in E. coli and M. smegmatis, and the docking site for translational GTPases, the L12 stalk, is extended in the ribosomes from M. smegmatis compared to E. coli. M. smegmatis genes coding for IF1, IF2, IF3, EF-G, and EF-Tu were identified by sequence alignments; the respective recombinant proteins were prepared and studied in a variety of biochemical and biophysical assays with M. smegmatis ribosomes. We found that the activities of initiation and elongation factors and the rates of elemental reactions of initiation and elongation of protein synthesis are remarkably similar with M. smegmatis and E. coli components. The data suggest a very high degree of conservation of basic translation mechanisms, probably due to coevolution of the ribosome components and translation factors. This work establishes the reconstituted translation system from individual purified M. smegmatis components as an alternative to that from E. coli to study the mechanisms of translation and to test the action of antibiotics against Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fator de Iniciação 1 em Procariotos/genética , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/genética , Fator de Iniciação 3 em Procariotos/metabolismo , Fatores de Iniciação em Procariotos , Ligação Proteica , RNA de Transferência de Fenilalanina/metabolismo , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Homologia de Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 105(9): 3244-9, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18308926

RESUMO

Despite the fact that important genetic diseases are caused by mutant mitochondrial ribosomes, the molecular mechanisms by which such ribosomes result in a clinical phenotype remain largely unknown. The absence of experimental models for mitochondrial diseases has also prevented the rational search for therapeutic interventions. Here, we report on the construction of bacterial hybrid ribosomes that contain various versions of the mitochondrial decoding region of ribosomal RNA. We show that the pathogenic mutations A1555G and C1494T decrease the accuracy of translation and render the ribosomal decoding site hypersusceptible to aminoglycoside antibiotics. This finding suggests misreading of the genetic code as an important molecular mechanism in disease pathogenesis.


Assuntos
Surdez/genética , Genes Mitocondriais/fisiologia , Doenças Mitocondriais/genética , Biossíntese de Proteínas , Ribossomos/genética , Alelos , Aminoglicosídeos/genética , Aminoglicosídeos/fisiologia , Quimera , Código Genético , Perda Auditiva Neurossensorial , Mutação Puntual , RNA Bacteriano , RNA Ribossômico/genética
4.
Nucleic Acids Res ; 35(18): 6086-93, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17766247

RESUMO

Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S rRNA with its eukaryotic counterpart, resulting in bacterial hybrid ribosomes with a fully functional eukaryotic rRNA decoding site. Cell-free translation assays demonstrated that hybrid ribosomes carrying the rRNA decoding site of higher eukaryotes show pronounced resistance to aminoglycoside antibiotics, equivalent to that of rabbit reticulocyte ribosomes, while the decoding sites of parasitic protozoa show distinctive drug susceptibility. Our findings suggest that phylogenetically variable components of the ribosome, other than the rRNA-binding site, do not affect aminoglycoside susceptibility of the protein-synthesis machinery. The activities of the hybrid ribosomes indicate that helix 44 of the rRNA decoding site behaves as an autonomous domain, which can be exchanged between ribosomes of different phylogenetic domains for study of function.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 16S/química , Ribossomos/efeitos dos fármacos , Sequência de Bases , Citosol/metabolismo , Embaralhamento de DNA , Células Eucarióticas/metabolismo , Código Genético , Humanos , Dados de Sequência Molecular , Mutação , Mycobacterium smegmatis/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 16S/efeitos dos fármacos , Ribossomos/química , Ribossomos/metabolismo
5.
Antimicrob Agents Chemother ; 50(4): 1489-96, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16569869

RESUMO

Aminoglycoside antibiotics that bind to the aminoacyl-tRNA site (A site) of the ribosome are composed of a common neamine core in which a glycopyranosyl ring is attached to position 4 of a 2-deoxystreptamine moiety. The core is further substituted by one (ribostamycin), two (neomycin and paromomycin), or three (lividomycin A) additional sugars attached to position 5 of the 2-deoxystreptamine. To study the role of rings III, IV, and V in aminoglycoside binding, we used isogenic Mycobacterium smegmatis DeltarrnB mutants carrying homogeneous populations of mutant ribosomes with alterations in the 16S rRNA A site. MICs were determined to investigate drug-ribosome interactions, and the results were compared with that of the previously published crystal structure of paromomycin bound to the ribosomal A site. Our analysis demonstrates that the stacking interaction between ring I and G1491 is largely sequence independent, that rings III and IV each increase the strength of drug binding to the ribosome, that ring IV of the 6'-NH3+ aminoglycosides compensates for loss of interactions between ring II and U1495 and between ring III and G1491, that the aminoglycosides rely on pseudo-base pairing between ring I and A1408 for binding independently of the number of sugar rings attached to the neamine core, that addition of ring V to the 6'-OH 4,5-aminoglycoside paromomycin does not alter the mode of binding, and that alteration of the U1406.U1495 wobble base pair to the Watson-Crick interaction pair 1406C-1495G yields ribosomal drug susceptibilities to 4,5-aminoglycosides comparable to those seen with the wild-type A site.


Assuntos
Antibacterianos/farmacologia , Neomicina/metabolismo , RNA Ribossômico 16S/química , Ribossomos/metabolismo , Sítios de Ligação , Mutagênese Sítio-Dirigida , Neomicina/química , Ribossomos/química , Relação Estrutura-Atividade
6.
J Biol Chem ; 280(43): 36065-72, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16129670

RESUMO

Peptide bond formation is the main catalytic function of the ribosome. The mechanism of catalysis is presumed to be highly conserved in all organisms. We tested the conservation by comparing mechanistic features of the peptidyl transfer reaction on ribosomes from Escherichia coli and the Gram-positive bacterium Mycobacterium smegmatis. In both cases, the major contribution to catalysis was the lowering of the activation entropy. The rate of peptide bond formation was pH independent with the natural substrate, amino-acyl-tRNA, but was slowed down 200-fold with decreasing pH when puromycin was used as a substrate analog. Mutation of the conserved base A2451 of 23 S rRNA to U did not abolish the pH dependence of the reaction with puromycin in M. smegmatis, suggesting that A2451 did not confer the pH dependence. However, the A2451U mutation alters the structure of the peptidyl transferase center and changes the pattern of pH-dependent rearrangements, as probed by chemical modification of 23 S rRNA. A2451 seems to function as a pivot point in ordering the structure of the peptidyl transferase center rather than taking part in chemical catalysis.


Assuntos
Peptídeos/química , RNA Ribossômico 23S/química , Ribossomos/metabolismo , Alelos , Sítios de Ligação , Catálise , Sequência Conservada , Entropia , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Mutagênese , Mutação , Mycobacterium smegmatis/metabolismo , Plasmídeos/metabolismo , Mutação Puntual , Conformação Proteica , Puromicina/química , Puromicina/farmacologia , RNA/química , RNA de Transferência/química , Ribossomos/química , Especificidade por Substrato , Termodinâmica , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 102(14): 5180-5, 2005 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15795375

RESUMO

The 23S rRNA A2058G alteration mediates macrolide, lincosamide, and streptogramin B resistance in the bacterial domain and determines the selectivity of macrolide antibiotics for eubacterial ribosomes, as opposed to eukaryotic ribosomes. However, this mutation is associated with a disparate resistance phenotype: It confers high-level resistance to ketolides in mycobacteria but only marginally affects ketolide susceptibility in streptococci. We used site-directed mutagenesis of nucleotides within domain V of 23S rRNA to study the molecular basis for this disparity. We show that mutational alteration of the polymorphic 2057-2611 base pair from A-U to G-C in isogenic mutants of Mycobacterium smegmatis significantly affects susceptibility to ketolides but does not influence susceptibility to other macrolide antibiotics. In addition, we provide evidence that the 2057-2611 polymorphism determines the fitness cost of the 23S rRNA A2058G resistance mutation. Supported by structural analysis, our results indicate that polymorphic nucleotides mediate the disparate phenotype of genotypically identical resistance mutations and provide an explanation for the large species differences in the epidemiology of defined drug resistance mutations.


Assuntos
Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mutação Puntual , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , Sequência de Bases , Sítios de Ligação/genética , Claritromicina/farmacologia , Farmacorresistência Bacteriana/genética , Cetolídeos/química , Cetolídeos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fenótipo , RNA Bacteriano/química , RNA Ribossômico 23S/química , Especificidade da Espécie , Tilosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...