Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37375006

RESUMO

In this study, a co-culture system combining bacterial cellulose (BC) producers and hyaluronic acid (HA) producers was developed for four different combinations. AAB of the genus Komagataeibacter sp. and LAB of the Lactocaseibacillus genus were used to produce BC and HA, respectively. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate changes in BC-HA composites chemical and morphological structure. Water absorption, uptake, and antibacterial properties were also tested. Outcomes highlighted a higher bacterial cellulose yield and the incorporation of hyaluronic acid into the composite. The presence of hyaluronic acid increased fiber dimension-nearly doubled for some combinations-which led to a decreased crystallinity of the composites. Different results were observed based on the BC producer and HA producer combination. However, water holding capacity (WHC) in all the samples improved with the presence of HA, while water uptake worsened. A thymol-enriched BC-HA composite showed high antibacterial activity against Escherichia coli DSM 30083T and Staphylococcus aureus DSM 20231T. Results could contribute to opening new applications in the cosmetics or pharmaceutical fields.

2.
Appl Microbiol Biotechnol ; 107(11): 3729-3744, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115254

RESUMO

In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.


Assuntos
Queijo , Olea , Águas Residuárias , Celulose , Soro do Leite , Ácido Acético , RNA Ribossômico 16S/química , Proteínas do Soro do Leite , Bactérias/genética
3.
Front Microbiol ; 13: 994097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312960

RESUMO

Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.

4.
Foods ; 11(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35804787

RESUMO

Currently, foods and beverages with healthy and functional properties, especially those that claim to prevent chronic diseases, are receiving more and more interest. As a result, numerous foods and beverages have been launched onto the market. Among the products with enhanced properties, vinegar and fermented beverages have a high potential for growth. Date palm fruits are a versatile raw material rich in sugars, dietary fibers, minerals, vitamins, and phenolic compounds; thus, they are widely used for food production, including date juice, jelly, butter, and fermented beverages, such as wine and vinegar. Furthermore, their composition makes them suitable for the formulation of functional foods and beverages. Microbial transformations of date juice include alcoholic fermentation for producing wine as an end-product, or as a substrate for acetic fermentation. Lactic fermentation is also documented for transforming date juice and syrup. However, in terms of acetic acid bacteria, little evidence is available on the exploitation of date juice by acetic and gluconic fermentation for producing beverages. This review provides an overview of date fruit's composition, the related health benefits for human health, vinegar and date-based fermented non-alcoholic beverages obtained by acetic acid bacteria fermentation.

5.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631879

RESUMO

In this study, twelve strains of acetic acid bacteria (AAB) belonging to five different genera were tested for their ability to produce levan, at 70 and 250 g/L of sucrose concentration, respectively. The fructan produced by the bacterial strains was characterized as levan by NMR spectroscopy. Most of the strains produced levan, highlighting intra- and inter-species variability. High yield was observed for Neoasaia chiangmaiensis NBRC 101099 T, Kozakia baliensis DSM 14400 T and Gluconobacter cerinus DSM 9533 T at 70 g/L of sucrose. A 12-fold increase was observed for N. chiangmaiensis NBRC 101099 T at 250 g/L of sucrose concentration. Levan production was found to be affected by glucose accumulation and pH reduction, especially in Ko. baliensis DSM 14400 T. All the Gluconobacter strains showed a negative correlation with the increase in sucrose concentration. Among strains of Komagataeibacter genus, no clear effect of sucrose on levan yield was found. Results obtained in this study highlighted the differences in levan yield among AAB strains and showed interdependence between culture conditions, carbon source utilization, and time of incubation. On the contrary, the levan yield was not always related to the sucrose concentration.

6.
Sci Rep ; 11(1): 19311, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588564

RESUMO

In this study, a medical device made of surface microstructured bacterial cellulose was produced using cellulose-producing acetic acid bacteria wild-type strains in combination with guided assembly-based biolithography. The medical device aims at interfering with the cell's focal adhesion establishment and maturation around implantable devices placed in soft tissues by the symmetrical array on its surface. A total of 25 Komagataeibacter strains was evaluated over a three-step selection. In the first step, the ability of strains to produce a suitable bacterial cellulose layer with high production yield was examined, then nine strains, with a uniform and smooth layer of bacterial cellulose, were cultured in a custom-made silicone bioreactor and finally the characteristics of the symmetrical array of topographic features on the surface were analysed. Selected strains showed high inter and intra species variability in bacterial cellulose production. The devices obtained by K2G30, K1G4, DSM 46590 (Komagataeibacter xylinus), K2A8 (Komagataeibacter sp.) and DSM 15973T (Komagataeibacter sucrofermentas) strains were pouched-formed with hexagonal surface pattern required for reducing the formation of fibrotic tissue around devices, once they are implanted in soft tissues. Our findings revealed the effectiveness of the selected Komagataeibacter wild-type strains in producing surface microstructured bacterial cellulose pouches for making biomedical devices.


Assuntos
Acetobacteraceae/metabolismo , Bioimpressão/métodos , Equipamentos e Provisões , Impressão Tridimensional , Celulose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...