Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 651(Pt 1): 1126-1136, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360244

RESUMO

The transfer of metal and metalloid trace elements (MTEs) from contaminated soil to grapevines is a major issue for grape consumption and for the associated health risks. Based on an isotopic approach, we shed light on the concept of MTE bioavailability. The bioavailable fractions are identified by using the Sr-isotope ratio as a proxy for MTEs. This allows us to differentiate three soil reservoirs: the 'current available fraction' in soil water, the 'reserve available fraction' stored in mineral phases of the soil fractions, and the 'non-available fraction'. The reserve available fraction, representing 10 to 60% of bulk soil depending on the MTE, includes the exchangeable, carbonates, humic substance and oxides fractions. The 87Sr/86Sr isotopic signatures of grape berries and vine leaves show an additional source of MTEs, which is imported by foliar uptake and can contribute up to 10% of the MTEs in leaves. In addition, root-uptake and translocation rates show high accumulation rates of Co, Sn and Cu, and low ones for As, Sb, Zn and Cd. A daily intake between 1 and 3 kg of (dry grapes) would reach the benchmark dose level for a 0.5% (BMDL0.5). While such a daily intake of grapes is unreasonable, consumption of other local vegetables and fruit would contribute to the daily intake. Hence, a chronic arsenic exposure is of great concern for human health in mining areas. We outline the importance of geochemical tracers, such as Sr isotopes, when determining the transfer and translocation of MTEs in plants. Our method presents a high-precision evaluation of the bioavailability and bioaccumulation of MTEs, and a better understanding of these processes in plants, thus leading to a better assessment of the environmental risk on human health.


Assuntos
Arsênio/metabolismo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Isótopos de Estrôncio/análise , Oligoelementos/metabolismo , Vitis/metabolismo , Disponibilidade Biológica , Metaloides/metabolismo
2.
Environ Sci Technol ; 45(16): 6823-30, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21739978

RESUMO

In the protected area of the Cévennes National Park (Southern France), 114 wild brown trout (Salmo trutta fario) were captured at six locations affected to different extents by historical mining and metallurgy dating from the Iron Age to Modern Times. Cadmium and lead in trout livers and muscles reflect high sediment contamination, although an age-related effect was also detected for hepatic metal concentrations. Lead isotope signatures confirm exposure to drainage from mining and metallurgical waste. Developmental instability, assessed by fluctuating asymmetry, is significantly correlated with cadmium and lead concentrations in trout tissues, suggesting that local contamination may have affected fish development. Nowadays, the area is among the least industrialized in France. However, our results show that 60% of the specimens at one site exceed EU maximum allowed cadmium or lead concentration in foodstuffs. The mining heritage should not be neglected when establishing strategies for long-term environmental management.


Assuntos
Monitoramento Ambiental , Mineração , Truta/metabolismo , Animais , Conservação dos Recursos Naturais , França , Geografia , Fígado/metabolismo , Metais/metabolismo , Músculos/metabolismo , Pelve/anatomia & histologia , Rios/química , Truta/anatomia & histologia , Poluição da Água/análise
3.
Anal Chim Acta ; 599(2): 177-90, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17870280

RESUMO

Ten international laboratories participated in an inter-laboratory comparison of a fossil bone composite with the objective of producing a matrix and structure-matched reference material for studies of the bio-mineralization of ancient fossil bone. We report the major and trace element compositions of the fossil bone composite, using in-situ method as well as various wet chemical digestion techniques. For major element concentrations, the intra-laboratory analytical precision (%RSD(r)) ranges from 7 to 18%, with higher percentages for Ti and K. The %RSD(r) are smaller than the inter-laboratory analytical precision (%RSD(R); <15-30%). Trace element concentrations vary by approximately 5 orders of magnitude (0.1 mg kg(-1) for Th to 10,000 mg kg(-1) for Ba). The intra-laboratory analytical precision %RSD(r) varies between 8 and 45%. The reproducibility values (%RSD(R)) range from 13 to <50%, although extreme value >100% was found for the high field strength elements (Hf, Th, Zr, Nb). The rare earth element (REE) concentrations, which vary over 3 orders of magnitude, have %RSD(r) and %RSD(R) values at 8-15% and 20-32%, respectively. However, the REE patterns (which are very important for paleo-environmental, taphonomic and paleo-oceanographic analyses) are much more consistent. These data suggest that the complex and unpredictable nature of the mineralogical and chemical composition of fossil bone makes it difficult to set-up and calibrate analytical instruments using conventional standards, and may result in non-spectral matrix effects. We propose an analytical protocol that can be employed in future inter-laboratory studies to produce a certified fossil bone geochemical standard.


Assuntos
Osso e Ossos/química , Fósseis , Espectrometria de Massas/métodos , Animais , Apatitas/análise , Lasers , Metais Terras Raras/análise , Organofosfatos/análise , Padrões de Referência , Reprodutibilidade dos Testes , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...