Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 17(5): 659-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26931568

RESUMO

In order to maintain a stable genome, cells need to detect and repair DNA damage before they complete the division cycle. To this end, cell cycle checkpoints prevent entry into the next cell cycle phase until the damage is fully repaired. Proper reentry into the cell cycle, known as checkpoint recovery, requires that a cell retains its original cell cycle state during the arrest. Here, we have identified Tousled-like kinase 2 (Tlk2) as an important regulator of recovery after DNA damage in G2. We show that Tlk2 regulates the Asf1A histone chaperone in response to DNA damage and that depletion of Asf1A also produces a recovery defect. Both Tlk2 and Asf1A are required to restore histone H3 incorporation into damaged chromatin. Failure to do so affects expression of pro-mitotic genes and compromises the cellular competence to recover from damage-induced cell cycle arrests. Our results demonstrate that Tlk2 promotes Asf1A function during the DNA damage response in G2 to allow for proper restoration of chromatin structure at the break site and subsequent recovery from the arrest.


Assuntos
Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Proteínas Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Ativação Enzimática , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Quinases/genética , RNA Interferente Pequeno/genética
2.
Front Oncol ; 5: 132, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114094

RESUMO

Polo-like kinase 1 (Plk1) is one of the major kinases controlling mitosis and cell division. Plk1 is first recruited to the centrosome in S phase, then appears on the kinetochores in late G2, and at the end of mitosis, it translocates to the central spindle. Activation of Plk1 requires phosphorylation of T210 by Aurora A, an event that critically depends on the co-factor Bora. However, conflicting reports exist as to where Plk1 is first activated. Phosphorylation of T210 is first observed at the centrosomes, but kinase activity seems to be restricted to the nucleus in the earlier phases of G2. Here, we demonstrate that Plk1 activity manifests itself first in the nucleus using a nuclear FRET-based biosensor for Plk1 activity. However, we find that Bora is restricted to the cytoplasm and that Plk1 is phosphorylated on T210 at the centrosomes. Our data demonstrate that while Plk1 activation occurs on centrosomes, downstream target phosphorylation by Plk1 first occurs in the nucleus. We discuss several explanations for this surprising separation of activation and function.

3.
J Cell Sci ; 128(4): 607-20, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609713

RESUMO

Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , DNA/genética , Humanos , Transdução de Sinais/genética
4.
Cell Cycle ; 13(11): 1727-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675888

RESUMO

Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP-Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteína Quinase CDC2 , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Mutagênese Sítio-Dirigida , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mos/metabolismo , Xenopus laevis , Quinase 1 Polo-Like
5.
J Cell Sci ; 127(Pt 4): 801-11, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24338364

RESUMO

Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Fosforilação , Quinase 1 Polo-Like
6.
Trends Biochem Sci ; 37(12): 534-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23141205

RESUMO

Polo-like kinase (Plk)1 executes several essential functions to promote cell division. These functions range from centrosome maturation in late G2 phase to the regulation of cytokinesis, which necessitates precise separation of Plk1-dependent substrate phosphorylation over time. Multiple levels of control are in place to ensure that Plk1-dependent phosphorylation of its various substrates is properly coordinated in time and space. Here, we review the current knowledge on the mechanisms that enforce the temporal and spatial control of Plk1 activity, and how this results in coordinated phosphorylation of its many different substrates. We also review a number of newly discovered functions of Plk1 that provide more insights into the spatiotemporal control of Plk1-dependent substrate phosphorylation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Humanos , Fosforilação , Fatores de Tempo , Quinase 1 Polo-Like
7.
EMBO J ; 28(20): 3196-206, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19713933

RESUMO

Activation of the DNA damage checkpoint causes a cell-cycle arrest through inhibition of cyclin-dependent kinases (cdks). To successfully recover from the arrest, a cell should somehow be maintained in its proper cell-cycle phase. This problem is particularly eminent when a cell arrests in G2, as cdk activity is important to establish a G2 state. Here, we identify the phosphatase Wip1 (PPM1D) as a factor that maintains a cell competent for cell-cycle re-entry during an ongoing DNA damage response in G2. We show that Wip1 function is required throughout the arrest, and that Wip1 acts by antagonizing p53-dependent repression of crucial mitotic inducers, such as Cyclin B and Plk1. Our data show that the primary function of Wip1 is to retain cellular competence to divide, rather than to silence the checkpoint to promote recovery. Our findings uncover Wip1 as a first in class recovery competence gene, and suggest that the principal function of Wip1 in cellular transformation is to retain proliferative capacity in the face of oncogene-induced stress.


Assuntos
Fase G2/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina B/genética , Ciclina B/metabolismo , Citometria de Fluxo , Fase G2/genética , Humanos , Microscopia , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Quinase 1 Polo-Like
8.
Cell Signal ; 20(6): 1104-16, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346875

RESUMO

Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.


Assuntos
Movimento Celular , AMP Cíclico/metabolismo , Células Epiteliais/enzimologia , Adesões Focais/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Cães , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Adesões Focais/ultraestrutura , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Humanos , Integrinas/metabolismo , Junções Intercelulares/fisiologia , Pseudópodes/ultraestrutura , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...