Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodes Res ; 5: 0009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849465

RESUMO

Deinococcus radiodurans' high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in D. radiodurans. This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-SceI endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid. We demonstrate the utility of SLICER for creating multiple gene deletions in D. radiodurans by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of D. radiodurans, including its potential as an in vivo DNA assembly platform.

2.
NPJ Microgravity ; 9(1): 47, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344487

RESUMO

With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.

3.
ACS Synth Biol ; 11(3): 1068-1076, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35254818

RESUMO

Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.


Assuntos
Deinococcus , Deinococcus/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Plasmídeos/genética
4.
Biodes Res ; 2022: 9802168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850145

RESUMO

Fungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals. Still, the great untapped potential exists within the diverse fungal kingdom. However, many yeasts are intractable, preventing their use in biotechnology or in the development of novel treatments for pathogenic fungi. Therefore, as a first step for the domestication of new fungi, an efficient DNA delivery method needs to be developed. Here, we report the creation of superior conjugative plasmids and demonstrate their transfer via conjugation from bacteria to 7 diverse yeast species including the emerging pathogen Candida auris. To create our superior plasmids, derivatives of the 57 kb conjugative plasmid pTA-Mob 2.0 were built using designed gene deletions and insertions, as well as some unintentional mutations. Specifically, a cluster mutation in the promoter of the conjugative gene traJ had the most significant effect on improving conjugation to yeasts. In addition, we created Golden Gate assembly-compatible plasmid derivatives that allow for the generation of custom plasmids to enable the rapid insertion of designer genetic cassettes. Finally, we demonstrated that designer conjugative plasmids harboring engineered restriction endonucleases can be used as a novel antifungal agent, with important applications for the development of next-generation antifungal therapeutics.

5.
Biology (Basel) ; 9(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114477

RESUMO

Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana's mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications.

6.
PLoS One ; 14(6): e0206781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31206509

RESUMO

Storage, manipulation and delivery of DNA fragments is crucial for synthetic biology applications, subsequently allowing organisms of interest to be engineered with genes or pathways to produce desirable phenotypes such as disease or drought resistance in plants, or for synthesis of a specific chemical product. However, DNA with high G+C content can be unstable in many host organisms including Saccharomyces cerevisiae. Here, we report the development of Sinorhizobium meliloti, a nitrogen-fixing plant symbioticα-Proteobacterium, as a novel host that can store DNA, and mobilize DNA to E. coli, S. cerevisiae, and the eukaryotic microalgae Phaeodactylum tricornutum. To achieve this, we deleted the hsdR restriction-system in multiple reduced genome strains of S. meliloti that enable DNA transformation with up to 1.4 x 105 and 2.1 x 103 CFU µg-1 of DNA efficiency using electroporation and a newly developed polyethylene glycol transformation method, respectively. Multi-host and multi-functional shuttle vectors (MHS) were constructed and stably propagated in S. meliloti, E. coli, S. cerevisiae, and P. tricornutum. We also developed protocols and demonstrated direct transfer of these MHS vectors via conjugation from S. meliloti to E. coli, S. cerevisiae, and P. tricornutum. The development of S. meliloti as a new host for inter-kingdom DNA transfer will be invaluable for synthetic biology research and applications, including the installation and study of genes and biosynthetic pathways into organisms of interest in industry and agriculture.


Assuntos
DNA/metabolismo , Vetores Genéticos , Sinorhizobium meliloti/genética , Biologia Sintética/métodos , Conjugação Genética , Eletroporação , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Transformação Genética
7.
Genome Announc ; 4(2)2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26941156

RESUMO

We report the draft genome sequences of 25 Salmonella enterica strains representing 24 different serotypes, many of which were not available in public repositories during our selection process. These draft genomes will provide useful reference for the genetic variation between serotypes and aid in the development of molecular typing tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...