Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894647

RESUMO

BACKGROUND: Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS: Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS: the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS: intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.


Assuntos
Células-Tronco Mesenquimais , Radioisótopos , Humanos , Ratos , Animais , Distribuição Tecidual , Oxiquinolina , Tomografia por Emissão de Pósitrons , Animais de Laboratório , Zircônio , Linhagem Celular Tumoral
2.
J Pers Med ; 13(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763166

RESUMO

BACKGROUND: Radiation therapy (RT) is an important step in the treatment of primary breast cancer as it is one of the leading contributors to cancer incidence among women. Most patients with this disease acquire radiation-induced lymphopenia in the early post-radiation period; however, little is known about the effect of RT on the composition of lymphocyte populations in such patients. This study was aimed at investigating the effect of adjuvant remote RT-performed in the classical mode for patients with primary breast cancer-on the main components of cell-mediated immunity (major lymphocyte populations), including those in patients receiving chemotherapy. METHODS: Between 2020 and 2022, 96 patients with stage I-III breast cancer were included in this study. All patients in the final stage of complex treatment received RT via a 3D conformal technique (3DCRT). The clinical target volume of this RT included the breast or chest wall and locoregional lymphatics. Flow cytometry was used to assess the levels and phenotypes of circulating lymphocytes before and after RT (no more than 7 days before and after RT). The evaluation of the impact of polychemotherapy (PCT) was conducted to determine whether it was a risk factor for the onset of radio-induced lymphopenia (RIL) in the context of RT. RESULTS: When assessing the immune status in the general group of patients (n = 96), before the start of adjuvant external beam radiotherapy (EBRT), the average number of lymphocytes was 1.68 ± 0.064 × 109/L; after the course of adjuvant EBRT, it decreased to 1.01 ± 0.044 × 109/L (p < 0.001). When assessing the absolute indicators of cellular immunity in the general group of patients with BC after a course of adjuvant EBRT, significant dynamics were revealed by the changes in all cell populations of lymphocytes (paired t-test, p < 0.05). CONCLUSION: The adaptive immune system in breast cancer patients changed in the early post-radiation period. The absolute levels of B-, T- and natural killer cells significantly reduced after RT regardless of whether the patients previously underwent chemotherapy courses. RT for patients with primary breast cancer should be considered in clinical management because it significantly alters lymphocyte levels and should be considered when assessing antitumor immunity, as significant changes in T-cell immunity have been observed. In addition, the identified changes are critical if specific targeted therapy or immunotherapy is needed.

3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047317

RESUMO

Each person is inevitably exposed to low doses of ionizing radiation (LDIR) throughout their life. The research results of LDIR effects are ambiguous and an accurate assessment of the risks associated with the influence of LDIR is an important task. Mesenchymal stromal cells (MSCs) are the regenerative reserve of an adult organism; because of this, they are a promising model for studying the effects of LDIR. The qualitative and quantitative changes in their characteristics can also be considered promising criteria for assessing the risks of LDIR exposure. The MSCs from human connective gingiva tissue (hG-MSCs) were irradiated at doses of 50, 100, 250, and 1000 mGy by the X-ray unit RUST-M1 (Russia). The cells were cultured continuously for 64 days after irradiation. During the study, we evaluated the secretory profile of hG-MSCs (IL-10, IDO, IL-6, IL-8, VEGF-A) using an ELISA test, the immunophenotype (CD45, CD34, CD90, CD105, CD73, HLA-DR, CD44) using flow cytometry, and the proliferative activity using the xCelligence RTCA cell analyzer at the chosen time points. The results of study have indicated the development of stimulating effects in the early stages of cultivation after irradiation using low doses of X-ray radiation. On the contrary, the effects of the low doses were comparable with the effects of medium doses of X-ray radiation in the long-term periods of cultivation after irradiation and have indicated the inhibition of the functional activity of MSCs.


Assuntos
Mercúrio , Células-Tronco Mesenquimais , Adulto , Humanos , Células-Tronco Mesenquimais/fisiologia , Radiação Ionizante , Federação Russa , Células Cultivadas , Diferenciação Celular
4.
Cells ; 9(12)2020 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260310

RESUMO

BACKGROUND: The search for an effective therapy for local radiation injuries (LRI) is urgent; one option is mesenchymal stem cells (MSC) derived from the placenta and their conditioned medium for the regenerative processes of the skin. METHODS: We used 80 animals, randomly assigned to four groups: control (C) animals that did not receive therapy; control with the introduction of culture medium concentrate (CM); introduction of MSCs (PL); introduction of CMPL. LRI modeling was performed on an X-ray machine at a dose of 110 Gy. Histological and immunohistochemical tests were performed. RESULTS: On the 112th day, the area of the open wound surface in the CMPL group was 6.7 times less than in the control group. Complete healing of the open wound surface of the skin in the CM group was observed in 40%, in CMPL 60%, in the PL group 20%, and in the C group there were no animals with a prolonged wound defect. A decrease in inflammatory processes was observed in the CMPL group. CONCLUSIONS: the use of a concentrate of conditioned MSCs (CMPL group) in severe LRI in laboratory animals accelerates the transition of the wound process to the stage of regeneration and epithelization.


Assuntos
Meios de Cultivo Condicionados/metabolismo , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Lesões por Radiação/terapia , Animais , Feminino , Inflamação/terapia , Gravidez , Ratos , Ratos Wistar , Regeneração/fisiologia , Pele/citologia , Cicatrização/fisiologia
5.
PLoS One ; 13(2): e0192445, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29432491

RESUMO

BACKGROUND AIMS: Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC) are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa. METHODS: The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR) analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells. RESULTS: The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12%) are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described. CONCLUSIONS: The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before use in medicine.


Assuntos
Aberrações Cromossômicas , Instabilidade Genômica , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos , Imunofenotipagem , Cariotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Repetições de Microssatélites , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...