Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 321: 111313, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696913

RESUMO

The growth and composition of fleshy fruits depend on resource acquisition and distribution in the plant. In tomato, the pedicel serves as the final connection between plant and fruit. However, very few quantitative data are available for the conducting tissues of the pedicel, nor is their genetic variability known. In the present study, a histological approach was combined with process-based modeling to evaluate the potential contribution made by the anatomy and histology of the pedicel to variations in fruit mass. Eleven genotypes were characterized and the impact of water deficit was studied for a single genotype using stress intensity and stage of application as variables. The results highlighted extensive variations in the relative proportions of the different pedicel tissues and in the absolute areas of xylem and phloem between genotypes. The model suggests that the variations in the area of the pedicel's vascular tissues induced by differences in genotype and water-deficit environments partly contributed to fruit mass variability. They therefore warrant phenotyping for use in the development of plant strains adapted to future environmental constraints. The results also demonstrated the need to develop non-invasive in vivo measurement methods to establish the number and size of active vessels and the flow rates in these vessels to improve prediction of water fluxes in plant architecture.


Assuntos
Solanum lycopersicum , Frutas/genética , Genótipo , Solanum lycopersicum/genética , Água , Xilema
2.
Plant J ; 105(1): 62-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095963

RESUMO

Fruits are complex organs that are spatially regulated during development. Limited phenotyping capacity at cell and tissue levels is one of the main obstacles to our understanding of the coordinated regulation of the processes involved in fruit growth and quality. In this study, the spatial evolution of biophysical and metabolic traits of peach and apple fruit was investigated during fruit development. In parallel, the multi-exponential relaxation times and apparent microporosity were assessed by quantitative magnetic resonance imaging (MRI). The aim was to identify the possible relationships between MRI parameters and variations in the structure and composition of fruit tissues during development so that transverse relaxation could be proposed as a biomarker for the assessment of the structural and functional evolution of fruit tissues during growth. The study provides species-specific data on developmental and spatial variations in density, cell number and size distribution, insoluble and soluble compound accumulation and osmotic and water potential in the fruit mesocarp. Magnetic resonance imaging was able to capture tissue evolution and the development of pericarp heterogeneity by accessing information on cell expansion, water status and distribution at cell level, and microporosity. Changes in vacuole-related transverse relaxation rates were mostly explained by cell/vacuole size. The impact of cell solute composition, microporosity and membrane permeability on relaxation times is also discussed. The results demonstrate the usefulness of MRI as a tool to phenotype fruits and to access important physiological data during development, including information on spatial variability.


Assuntos
Frutas/anatomia & histologia , Malus/anatomia & histologia , Prunus persica/anatomia & histologia , Frutas/metabolismo , Frutas/fisiologia , Imageamento por Ressonância Magnética , Malus/metabolismo , Malus/fisiologia , Prunus persica/metabolismo , Prunus persica/fisiologia
3.
Front Plant Sci ; 7: 1841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018381

RESUMO

Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85%) and decreased its fresh weight (up to 60%), big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16-18% in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which (i) the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and (ii) the high dry matter content in control treatment (C) was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4, and 8. The model was then applied to design ideotypes with high dry matter content in C condition and low fresh mass loss in WD condition. The ideotypes outperformed the RILs especially for large and medium fruit-size genotypes, by combining high pedicel conductance and high active uptake of sugars. Interestingly, five small fruit-size RILs were close to the selected ideotypes, and likely bear interesting traits and alleles for adaptation to WD.

4.
J Plant Physiol ; 190: 26-35, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26629612

RESUMO

Many studies have advocated that water deficit (WD) may exert beneficial effects on fruit quality. However, the fruit response to WD at specific developmental stages was seldom investigated, although different mechanisms could be involved at each stage and lead to different effects on final fruit quality. In the present study, a moderate WD (-60% of water supply compared to control) was applied during each of the three major phases of fruit development, namely cell division (CD), cell expansion (CE) and maturation (MT). Two cocktail tomato (Solanum lycopersicum L.) genotypes were studied, one producing poor quality fruits (LA1420), and the other one producing tasty fruits (PlovdivXXIVa named Plovdiv). Contrasted responses were observed between the two genotypes. For both of them, fruit fresh mass and size were not significantly reduced by WD, whatever the developmental phase affected. Osmotic regulations were likely involved in the CD treatment for LA1420 fruits, which accumulated more sugars (both on a dry and fresh matter basis) and less acids (on a dry matter basis). In the CE treatment, other adaptive strategies involving sugar metabolism and sub-cellular compartmentation were suggested. In contrast, the composition of Plovdiv fruits changed only under the MT treatment, with less sugars, acids and carotenoids compared to control fruits (both on a dry and fresh matter basis). Total ascorbic acid (AsA) was not significantly influenced by treatments in both genotypes. On their whole, results suggest that, depending on genotypes, fruits are sweeter and less acidic under WD, but that the nutritive value related to vitamin and carotenoid contents may be lessened. The sensitivity of each developmental phase highly depends on the genotype. All phases were sensitive to WD for LA1420, but only the ripening phase for Plovdiv. Interestingly, major changes in fruit composition were observed in LA1420 which presents poor fruit quality under control conditions. This suggests the onset of fast adaptive response to WD at the fruit level in this genotype.


Assuntos
Dessecação , Genótipo , Solanum lycopersicum/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Água/metabolismo
5.
J Exp Bot ; 60(1): 237-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19033553

RESUMO

Many quantitative trait loci (QTLs) for quality traits have been located on the tomato genetic map, but introgression of favourable wild alleles into large fruited species is hampered by co-localizations of QTLs with antagonist effects. The aim of this study was to assess the growth processes controlled by the main QTLs for fruit size and composition. Four nearly isogenic lines (NILs) derived from an intraspecific cross between a tasty cherry tomato (Cervil) and a normal-tasting large fruit tomato (Levovil) were studied. The lines carried one (L2, L4, and L9) or five (Lx) introgressions from Cervil on chromosomes 1, 2, 4, and 9. QTLs for fruit size could be mainly associated with cell division processes in L2 and L9, whereas cell expansion was rather homogeneous among the genotypes, except Cervil for which the low expansion rate was attributed to low cell plasticity. The link between endoreduplication and fruit size remained unclear, as cell or fruit sizes were positively correlated with the cell DNA content, but not with the endoreduplication factor. QTLs for fruit composition reflected differences in water accumulation rather than in sugar accumulation, except in L9 for which the up-regulation of sucrose unloading and hexose transport and/or starch synthesis was suggested. This may explain the increased amount of carbon allocated to cell structures in L9, which could be related to a QTL for fruit texture. In Lx, these effects were attenuated, except on fruit size and cell division. Finally, the region on top of chromosome 9 may control size and composition attributes in tomato, by a combination of QTL effects on cell division, cell wall synthesis, and carbon import and metabolism.


Assuntos
Frutas/química , Frutas/crescimento & desenvolvimento , Locos de Características Quantitativas , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Carbono/metabolismo , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Frutas/genética , Solanum lycopersicum/genética
6.
J Exp Bot ; 58(7): 1903-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17443015

RESUMO

Endoreduplication is a phenomenon, widespread among plants, which consists of an incomplete cell cycle without mitosis and leads to the increase of the nuclear DNA content. In this work, a model was developed describing cell proliferation and DNA endoreduplication over the whole fruit development, from the pre-anthesis period until maturation. In each mitotic cycle of duration tau, the proportion of cells proceeding through division depends on a constant parameter rho and on the progressive decline of the proliferating capacity . The non-dividing cells may either stop the reduplication fully, or switch to repeated syntheses of DNA without cell division, resulting in cell endoreduplication. A single constant parameter sigma describes the proportion of cells that moves from one to the next class of DNA content after each lapse of time tauE, considered to be the minimum time required for an endocycle. The model calculates the total number of cells and their distribution among eight classes of ploidy level. The dynamic patterns of cell proliferation and ploidy were compared with those obtained experimentally on two contrasting tomato genotypes. The approach developed in this model should allow the future integration of new knowledge concerning the genetic and environmental control of the switch from complete to incomplete cell cycle.


Assuntos
Proliferação de Células , Frutas/genética , Modelos Genéticos , Poliploidia , Solanum lycopersicum/genética , Divisão Celular , Replicação do DNA , Frutas/citologia , Frutas/crescimento & desenvolvimento , Genótipo , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...