Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622897

RESUMO

Genomic data contribute invaluable information to the epidemiological investigation of pathogens of public health importance. However, whole-genome sequencing (WGS) of bacteria typically relies on culture, which represents a major hurdle for generating such data for a wide range of species for which culture is challenging. In this study, we assessed the use of culture-free target-enrichment sequencing as a method for generating genomic data for two bacterial species: (1) Bacillus anthracis, which causes anthrax in both people and animals and whose culture requires high-level containment facilities; and (2) Mycoplasma amphoriforme, a fastidious emerging human respiratory pathogen. We obtained high-quality genomic data for both species directly from clinical samples, with sufficient coverage (>15×) for confident variant calling over at least 80% of the baited genomes for over two thirds of the samples tested. Higher qPCR cycle threshold (Ct) values (indicative of lower pathogen concentrations in the samples), pooling libraries prior to capture, and lower captured library concentration were all statistically associated with lower capture efficiency. The Ct value had the highest predictive value, explaining 52 % of the variation in capture efficiency. Samples with Ct values ≤30 were over six times more likely to achieve the threshold coverage than those with a Ct > 30. We conclude that target-enrichment sequencing provides a valuable alternative to standard WGS following bacterial culture and creates opportunities for an improved understanding of the epidemiology and evolution of many clinically important pathogens for which culture is challenging.


Assuntos
Genômica , Saúde Pública , Animais , Bactérias/genética , Humanos , Sequenciamento Completo do Genoma/métodos
2.
BMC Genomics ; 23(1): 268, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387579

RESUMO

BACKGROUND: Of the > 2600 Salmonella serovars, Salmonella enterica serovar I 4,[5],12:i:- (serovar I 4,[5],12:i:-) has emerged as one of the most common causes of human salmonellosis and the most frequent multidrug-resistant (MDR; resistance to ≥3 antimicrobial classes) nontyphoidal Salmonella serovar in the U.S. Serovar I 4,[5],12:i:- isolates have been described globally with resistance to ampicillin, streptomycin, sulfisoxazole, and tetracycline (R-type ASSuT) and an integrative and conjugative element with multi-metal tolerance named Salmonella Genomic Island 4 (SGI-4). RESULTS: We analyzed 13,612 serovar I 4,[5],12:i:- strain sequences available in the NCBI Pathogen Detection database to determine global distribution, animal sources, presence of SGI-4, occurrence of R-type ASSuT, frequency of antimicrobial resistance (AMR), and potential transmission clusters. Genome sequences for serovar I 4,[5],12:i:- strains represented 30 countries from 5 continents (North America, Europe, Asia, Oceania, and South America), but sequences from the United States (59%) and the United Kingdom (28%) were dominant. The metal tolerance island SGI-4 and the R-type ASSuT were present in 71 and 55% of serovar I 4,[5],12:i:- strain sequences, respectively. Sixty-five percent of strain sequences were MDR which correlates to serovar I 4,[5],12:i:- being the most frequent MDR serovar. The distribution of serovar I 4,[5],12:i:- strain sequences in the NCBI Pathogen Detection database suggests that swine-associated strain sequences were the most frequent food-animal source and were significantly more likely to contain the metal tolerance island SGI-4 and genes for MDR compared to all other animal-associated isolate sequences. CONCLUSIONS: Our study illustrates how analysis of genomic sequences from the NCBI Pathogen Detection database can be utilized to identify the prevalence of genetic features such as antimicrobial resistance, metal tolerance, and virulence genes that may be responsible for the successful emergence of bacterial foodborne pathogens.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Testes de Sensibilidade Microbiana , Salmonella/genética , Sorogrupo , Suínos , Estados Unidos/epidemiologia
3.
Front Microbiol ; 12: 644662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986735

RESUMO

Environmental microbial diversity is often investigated from a molecular perspective using 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While amplicon methods are fast, low-cost, and have curated reference databases, they can suffer from amplification bias and are limited in genomic scope. In contrast, shotgun metagenomic methods sample more genomic regions with fewer sequence acquisition biases, but are much more expensive (even with moderate sequencing depth) and computationally challenging. Here, we develop a set of 16S rRNA sequence capture baits that offer a potential middle ground with the advantages from both approaches for investigating microbial communities. These baits cover the diversity of all 16S rRNA sequences available in the Greengenes (v. 13.5) database, with no sequence having <78% sequence identity to at least one bait for all segments of 16S. The use of our baits provide comparable results to 16S amplicon libraries and shotgun metagenomic libraries when assigning taxonomic units from 16S sequences within the metagenomic reads. We demonstrate that 16S rRNA capture baits can be used on a range of microbial samples (i.e., mock communities and rodent fecal samples) to increase the proportion of 16S rRNA sequences (average > 400-fold) and decrease analysis time to obtain consistent community assessments. Furthermore, our study reveals that bioinformatic methods used to analyze sequencing data may have a greater influence on estimates of community composition than library preparation method used, likely due in part to the extent and curation of the reference databases considered. Thus, enriching existing aliquots of shotgun metagenomic libraries and obtaining modest numbers of reads from them offers an efficient orthogonal method for assessment of bacterial community composition.

4.
PLoS Negl Trop Dis ; 15(4): e0009320, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826628

RESUMO

BACKGROUND: Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). METHODOLOGY/PRINCIPAL FINDINGS: L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent differential expression of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. CONCLUSIONS/SIGNIFICANCE: Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets.


Assuntos
Leptospira/genética , Sorogrupo , Temperatura , Transcriptoma , Animais , Cricetinae , Rim/microbiologia , Leptospira/isolamento & purificação , Leptospirose/microbiologia
5.
Plos Negl Trop Dis, v. 15, n. 4, e0009320, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3656

RESUMO

Background: Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). Methodology/Principal findings: L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent DE of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. Conclusions/Significance: Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets.

6.
Genes (Basel) ; 11(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33142960

RESUMO

Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Sequências Repetitivas Dispersas/genética , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Surtos de Doenças/prevenção & controle , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ilhas Genômicas/genética , Testes de Sensibilidade Microbiana/métodos , Carne de Porco , Sorogrupo , Suínos , Estados Unidos
7.
Int J Microbiol ; 2020: 2368154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351572

RESUMO

Supershedding cattle shed Escherichia coli O157:H7 (O157) at ≥ 104 colony-forming units/g feces. We recently demonstrated that a supershed O157 (SS-O157) strain, SS-17, hyperadheres to the rectoanal junction (RAJ) squamous epithelial (RSE) cells which may contribute to SS-O157 persistence at this site in greater numbers, thereby increasing the fecal O157 load characterizing the supershedding phenomenon. In order to verify if this would be the signature adherence profile of any SS-O157, we tested additional SS-O157 isolates (n = 101; each from a different animal) in the RSE cell adherence assay. Similar to SS-17, all 101 SS-O157 exhibited aggregative adherence on RSE cells, with 56% attaching strongly (>10 bacteria/cell; hyperadherent) and 44% attaching moderately (1-10 bacteria/cells). Strain typing using Polymorphic Amplified Typing Sequences (PATS) analysis assigned the 101 SS-O157 into 5 major clades but not to any predominant genotype. Interestingly, 69% of SS-O157 isolates were identical to human O157 outbreak strains based on pulsed field gel electrophoresis profiles (CDC PulseNet Database), grouped into two clades by PATS distinguishing them from remaining SS-O157, and were hyperadherent on RSE cells. A subset of SS-O157 isolates (n = 53) representing different PATS and RSE cell adherence profiles were analyzed for antibiotic resistance (AR). Several SS-O157 (30/53) showed resistance to sulfisoxazole, and one isolate was resistant to both sulfisoxazole and tetracycline. Minimum inhibitory concentration (MIC) tests confirmed some of the resistance observed using the Kirby-Bauer disk diffusion test. Each SS-O157 isolate carried at least 10 genes associated with AR. However, genes directly associated with AR were rarely amplified: aac (3)-IV in 2 isolates, sul2 in 3 isolates, and tetB in one isolate. The integrase gene, int, linked with integron-based AR acquisition/transmission, was identified in 92% of SS-O157 isolates. Our results indicate that SS-O157 isolates could potentially persist longer at the bovine RAJ but exhibit limited resistance towards clinical antibiotics.

8.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582436

RESUMO

The genome of a multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar I 4,[5],12:i:- isolate from the 2015 U.S. pork outbreak was sequenced. The complete nucleotide sequence of USDA15WA-1 is 5,031,277 bp, including Salmonella genomic island 4 encoding tolerance to multiple metals and an MDR module inserted in the fljB region.

9.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530706

RESUMO

Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.


Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
10.
PLoS One ; 13(11): e0205700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383795

RESUMO

Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer's disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.


Assuntos
Infecções por Haemophilus/genética , Haemophilus parasuis/genética , Doenças dos Suínos/genética , Suínos/microbiologia , Sequência de Aminoácidos , Animais , Genoma/genética , Genômica , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/patogenicidade , Suínos/genética , Doenças dos Suínos/microbiologia , Virulência/genética , Fatores de Virulência/genética
11.
Gut Pathog ; 10: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515658

RESUMO

BACKGROUND: Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline and florfenicol are frequently administrated to food-producing animals to treat and prevent various diseases. Therefore, we evaluated the response of MDR S. Typhimurium after exposure to these two antibiotics. RESULTS: We exposed four MDR S. Typhimurium isolates to sub-inhibitory concentrations of chlortetracycline (16 and 32 µg/ml) or florfenicol (16 µg/ml) for 30 min during early-log phase. Differentially expressed genes following antibiotic treatment were identified using RNA-seq, and genes associated with attachment and those located within the Salmonella pathogenicity islands were significantly up-regulated following exposure to either antibiotic. The effect of antibiotic exposure on cellular invasion and motility was also assessed. Swimming and swarming motility were decreased due to antibiotic exposure. However, we observed chlortetracycline enhanced cellular invasion in two strains and florfenicol enhanced invasion in a third isolate. CONCLUSIONS: Chlortetracycline and florfenicol exposure during early-log growth altered the expression of nearly half of the genes in the S. Typhimurium genome, including a large number of genes associated with virulence and pathogenesis; this transcriptional alteration was not due to the SOS response. The results suggest that exposure to either of these two antibiotics may lead to the expression of virulence genes that are typically only transcribed in vivo, as well as only during late-log or stationary phase in vitro.

12.
Foodborne Pathog Dis ; 15(5): 253-261, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412766

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p < 0.01) and fecal moisture content (diarrhea) (p < 0.05) at 2 days postinoculation (d.p.i.) compared with preinoculation (day 0). Serum analyses revealed significantly increased interferon-gamma (IFN-γ) levels at 2 (p ≤ 0.0001) and 3 (p < 0.01) d.p.i. compared with day 0, and antibodies against Salmonella lipopolysaccharide (LPS) were present in all pigs by 7 d.p.i. Serovar I 4,[5],12:i:- colonized porcine intestinal tissues and was shed in the feces throughout the 7-day study. Analysis of the 16S rRNA gene sequences demonstrated that the fecal microbiota was significantly altered following MDR serovar I 4,[5],12:i:- inoculation, with the largest shift observed between 0 and 7 d.p.i. Our data indicate that the pork outbreak-associated MDR serovar I 4,[5],12:i:- isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.


Assuntos
Farmacorresistência Bacteriana Múltipla , Flagelina/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Tipagem de Bacteriófagos , Surtos de Doenças , Fezes/microbiologia , Feminino , Microbiologia de Alimentos , Humanos , RNA Ribossômico 16S/genética , Carne Vermelha/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Sorogrupo , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Estados Unidos/epidemiologia
13.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061709

RESUMO

Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Mastite Bovina/microbiologia , Polissacarídeos/genética , Animais , Bovinos , Proteínas de Escherichia coli/genética , Feminino , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Genômica/métodos , Glândulas Mamárias Animais/microbiologia , Fenótipo , Virulência/genética
14.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104932

RESUMO

Motile bacteria employ one or more methods for movement, including darting, gliding, sliding, swarming, swimming, and twitching. Multidrug-resistant (MDR) Salmonella carries acquired genes that provide resistance to specific antibiotics, and the goal of our study was to determine how antibiotics influence swimming and swarming in such resistant Salmonella isolates. Differences in motility were examined for six MDR Salmonella enterica serovar Typhimurium isolates grown on swimming and swarming media containing subinhibitory concentrations of chloramphenicol, kanamycin, streptomycin, or tetracycline. Chloramphenicol and tetracycline reduced both swimming and swarming, though the effect was more pronounced for swimming than for swarming at the same antibiotic and concentration. Swimming was limited by kanamycin and streptomycin, but these antibiotics had much less influence on decreasing swarming. Interestingly, kanamycin significantly increased swarming in one of the isolates. Removal of the aphA1 kanamycin resistance gene and complementation with either the aphA1 or aphA2 kanamycin resistance gene revealed that aphA1, along with an unidentified Salmonella genetic factor, was required for the kanamycin-enhanced swarming phenotype. Screening of 25 additional kanamycin-resistant isolates identified two that also had significantly increased swarming motility in the presence of kanamycin. This study demonstrated that many variables influence how antibiotics impact swimming and swarming motility in MDR S. Typhimurium, including antibiotic type, antibiotic concentration, antibiotic resistance gene, and isolate-specific factors. Identifying these isolate-specific factors and how they interact will be important to better understand how antibiotics influence MDR Salmonella motility. IMPORTANCESalmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a "Serious Threat Level pathogen." Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences.

15.
Genome Announc ; 5(34)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839016

RESUMO

We report here the genome sequences of two strains of Escherichia coli (ECA-B and ECC-M) that cause bovine mastitis. These strains are known to be associated with persistent and transient mastitis; strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection.

16.
mSystems ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567446

RESUMO

The swine gut microbiota encompasses a large and diverse population of bacteria that play a significant role in pig health. As such, a number of recent studies have utilized high-throughput sequencing of the 16S rRNA gene to characterize the composition and structure of the swine gut microbiota, often in response to dietary feed additives. It is important to determine which factors shape the composition of the gut microbiota among multiple studies and if certain bacteria are always present in the gut microbiota of swine, independently of study variables such as country of origin and experimental design. Therefore, we performed a meta-analysis using 20 publically available data sets from high-throughput 16S rRNA gene sequence studies of the swine gut microbiota. Next to the "study" itself, the gastrointestinal (GI) tract section that was sampled had the greatest effect on the composition and structure of the swine gut microbiota (P = 0.0001). Technical variation among studies, particularly the 16S rRNA gene hypervariable region sequenced, also significantly affected the composition of the swine gut microbiota (P = 0.0001). Despite this, numerous commonalities were discovered. Among fecal samples, the genera Prevotella, Clostridium, Alloprevotella, and Ruminococcus and the RC9 gut group were found in 99% of all fecal samples. Additionally, Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, Roseburia, the RC9 gut group, and Subdoligranulum were shared by >90% of all GI samples, suggesting a so-called "core" microbiota for commercial swine worldwide. IMPORTANCE The results of this meta-analysis demonstrate that "study" and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the swine GI tract regardless of country of origin, diet, age, or breed. Thus, these results provide the framework for future studies to manipulate the swine gut microbiota for potential health benefits.

17.
J Med Microbiol ; 66(5): 651-661, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28516860

RESUMO

PURPOSE: Non-host-adapted Salmonella serovars, including the common human food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), are opportunistic pathogens that can colonize food-producing animals without causing overt disease. Interventions against Salmonella are needed to enhance food safety, protect animal health and allow the differentiation of infected from vaccinated animals (DIVA). METHODOLOGY: An attenuated S. Typhimurium DIVA vaccine (BBS 866) was characterized for the protection of pigs following challenge with virulent S. Typhimurium. The porcine transcriptional response to BBS 866 vaccination was evaluated. RNA-Seq analysis was used to compare gene expression between BBS 866 and its parent; phenotypic assays were performed to confirm transcriptional differences observed between the strains. RESULTS: Vaccination significantly reduced fever and interferon-gamma (IFNγ) levels in swine challenged with virulent S. Typhimurium compared to mock-vaccinated pigs. Salmonella faecal shedding and gastrointestinal tissue colonization were significantly lower in vaccinated swine. RNA-Seq analysis comparing BBS 866 to its parental S. Typhimurium strain demonstrated reduced expression of the genes involved in cellular invasion and bacterial motility; decreased invasion of porcine-derived IPEC-J2 cells and swimming motility for the vaccine strain was consistent with the RNA-Seq analysis. Numerous membrane proteins were differentially expressed, which was an anticipated gene expression pattern due to the targeted deletion of several regulatory genes in the vaccine strain. RNA-Seq analysis indicated that genes involved in the porcine immune and inflammatory response were differentially regulated at 2 days post-vaccination compared to pre-vaccination. CONCLUSION: Evaluation of the S. Typhimurium DIVA vaccine indicates that vaccination will provide both swine health and food safety benefits.


Assuntos
Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Derrame de Bactérias , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Suínos , Doenças dos Suínos/microbiologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologia
18.
mSystems ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822550

RESUMO

Bacterial motility is thought to play an important role in virulence. We have previously shown that proficient bacterial swimming and swarming in vitro is correlated with the persistent intramammary infection phenotype observed in cattle. However, little is known about the gene regulation differences important for different motility phenotypes in Escherichia coli. In this work, three E. coli strains that cause persistent bovine mastitis infections were grown in three media that promote different types of motility (planktonic, swimming, and swarming). Using whole-transcriptome RNA sequencing, we identified a total of 935 genes (~21% of the total genome) that were differentially expressed in comparisons of the various motility-promoting conditions. We found that approximately 7% of the differentially expressed genes were associated with iron regulation. We show that motility assays using iron or iron chelators confirmed the importance of iron regulation to the observed motility phenotypes. Because of the observation that E. coli strains that cause persistent infections are more motile, we contend that better understanding of the genes that are differentially expressed due to the type of motility will yield important information about how bacteria can become established within a host. Elucidating the mechanisms that regulate bacterial motility may provide new approaches in the development of intervention strategies as well as facilitate the discovery of novel diagnostics and therapeutics. IMPORTANCE Bacteria can exhibit various types of motility. It is known that different types of motilities can be associated with virulence. In this work, we compare gene expression levels in bacteria that were grown under conditions that promoted three different types of E. coli motility. Better understanding of the mechanisms of how bacteria can cause an infection is an important first step to better diagnostics and therapeutics.

19.
J Microbiol Methods ; 129: 117-126, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27542997

RESUMO

PvuII ribotyping and MLST are each highly discriminatory methods for genotyping Bordetella bronchiseptica, but a direct comparison between these approaches has not been undertaken. The goal of this study was to directly compare the discriminatory power of PvuII ribotyping and MLST, using a single set of geographically and genetically diverse strains, and to determine whether subtyping based on repeat region sequences of the pertactin gene (prn) provides additional resolution. One hundred twenty-two isolates were analyzed, representing 11 mammalian or avian hosts, sourced from the United States, Europe, Israel and Australia. Thirty-two ribotype patterns were identified; one isolate could not be typed. In comparison, all isolates were typeable by MLST and a total of 30 sequence types was identified. An analysis based on Simpson's Index of Diversity (SID) revealed that ribotyping and MLST are nearly equally discriminatory, with SIDs of 0.920 for ribotyping and 0.919 for MLST. Nonetheless, for ten ribotypes and eight MLST sequence types, the alternative method discriminates among isolates that otherwise type identically. Pairing prn repeat region typing with ribotyping yielded 54 genotypes and increased the SID to 0.954. Repeat region typing combined with MLST resulted in 47 genotypes and an SID of 0.944. Given the technical and practical advantages of MLST over ribotyping, and the nominal difference in their SIDs, we conclude MLST is the preferred primary typing tool. We recommend the combination of MLST and prn repeat region typing as a high-resolution, objective and standardized approach valuable for investigating the population structure and epidemiology of B. bronchiseptica.


Assuntos
Bordetella bronchiseptica/classificação , Bordetella bronchiseptica/genética , Tipagem de Sequências Multilocus/normas , Ribotipagem , Austrália , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/imunologia , Bordetella bronchiseptica/isolamento & purificação , Europa (Continente) , Genótipo , Filogenia , Fatores de Virulência de Bordetella/genética
20.
PLoS One ; 11(5): e0155924, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27224046

RESUMO

Previous investigations aimed at determining whether the mammalian prion protein actually facilitates tangible molecular aspects of either a discrete or pleiotropic functional niche have been debated, especially given the apparent absence of overt behavioral or physiological phenotypes associated with several mammalian prion gene (PRNP) knockout experiments. Moreover, a previous evaluation of PRNP knockout cattle concluded that they were normal, suggesting that the bovine prion protein is physiologically dispensable. Herein, we examined the frequency and distribution of nucleotide sequence variation within the coding regions of bovine PRNP and the adjacent Doppel (PRND) gene, a proximal paralogue to PRNP on BTA13. Evaluation of PRND variation demonstrated that the gene does not depart from a strictly neutral model of molecular evolution, and would therefore not be expected to influence tests of selection within PRNP. Collectively, our analyses confirm that intense purifying selection is indeed occurring directly on bovine PRNP, which is indicative of a protein with an important role. These results suggest that the lack of observed fitness effects may not manifest in the controlled environmental conditions used to care for and raise PRNP knockout animals.


Assuntos
Evolução Molecular , Proteínas Priônicas/genética , Animais , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...