Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 10: 887658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722485

RESUMO

Pubertal delay in males is frequently due to constitutional delay of growth and puberty, but pathologic hypogonadism should be considered. After general illnesses and primary testicular failure are ruled out, the main differential diagnosis is central (or hypogonadotropic) hypogonadism, resulting from a defective function of the gonadotropin-releasing hormone (GnRH)/gonadotropin axis. Ciliopathies arising from defects in non-motile cilia are responsible for developmental disorders affecting the sense organs and the reproductive system. WDR11-mediated signaling in non-motile cilia is critical for fetal development of GnRH neurons. Only missense variants of WDR11 have been reported to date in patients with central hypogonadism, suggesting that nonsense variants could lead to more complex phenotypes. We report the case of a male patient presenting with delayed puberty due to Kallmann syndrome (central hypogonadism associated with hyposmia) in whom the next-generation sequencing analysis identified a novel heterozygous base duplication, leading to a frameshift and a stop codon in the N-terminal region of WDR11. The variant was predicted to undergo nonsense-mediated decay and classified as probably pathogenic following the American College of Medical Genetics and Genomics (ACMG) criteria. This is the first report of a variant in the WDR11 N-terminal region predicted to lead to complete expression loss that, contrary to expectations, led to a mild form of ciliopathy resulting in isolated Kallmann syndrome.

2.
Biochimie ; 197: 59-73, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134457

RESUMO

Short linear motifs (SLiMs) are key to cell physiology mediating reversible protein-protein interactions. Precise identification of SLiMs remains a challenge, being the main drawback of most bioinformatic prediction tools, their low specificity (high number of false positives). An important, usually overlooked, aspect is the relation between SLiMs mutations and disease. The presence of variants in each residue position can be used to assess the relevance of the corresponding residue(s) for protein function, and its (in)tolerance to change. In the present work, we combined sequence variant information and structural analysis of the energetic impact of single amino acid substitution (SAS) in SLiM-Receptor complex structure, and showed that it improves prediction of true functional SLiMs. Our strategy is based on building a SAS tolerance matrix that shows, for each position, whether one of the possible 19 SAS is tolerated or not. Herein we present the MotSASi strategy and analyze in detail 3 SLiMs involved in intracellular protein trafficking (phospho-independent tyrosine-based motif (NPx[Y/F]), type 1 PDZ-binding motif ([S/T]x[V/I/L]COOH) and tryptophan-acidic motif ([L/M]xW[D/E])). Our results show that inclusion of variant and structure information improves both prediction of true SLiMs and rejection of false positives, while also allowing better classification of variants inside SLiMs, a result with a direct impact in clinical genomics.


Assuntos
Biologia Computacional , Genômica , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional/métodos , Nucleotídeos
3.
Sex Dev ; 16(2-3): 138-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515230

RESUMO

Anti-müllerian hormone (AMH) is 1 of the 2 testicular hormones involved in male development of the genitalia during fetal life. When the testes differentiate, AMH is secreted by Sertoli cells and binds to its specific receptor type II (AMHR2) on the müllerian ducts, inducing their regression. In the female fetus, the lack of AMH allows the müllerian ducts to form the fallopian tubes, the uterus, and the upper part of the vagina. The human AMH gene maps to 19p13.3 and consists of 5 exons and 4 introns spanning 2,764 bp. The AMHR2 gene maps to 12q13.13, consists of 11 exons, and is 7,817 bp long. Defects in the AMH pathway are the underlying etiology of a subgroup of disorders of sex development (DSD) in 46,XY patients. The condition is known as the persistent müllerian duct syndrome (PMDS), characterized by the existence of a uterus and fallopian tubes in a boy with normally virilized external genitalia. Approximately 200 cases of patients with PMDS have been reported to date with clinical, biochemical, and molecular genetic characterization. An updated review is provided in this paper. With highly sensitive techniques, AMH and AMHR2 expression has also been detected in other tissues, and massive sequencing technologies have unveiled variants in AMH and AMHR2 genes in hitherto unsuspected conditions.


Assuntos
Hormônio Antimülleriano , Transtorno 46,XY do Desenvolvimento Sexual , Transtornos do Desenvolvimento Sexual , Receptores de Peptídeos , Receptores de Fatores de Crescimento Transformadores beta , Feminino , Humanos , Masculino , Hormônio Antimülleriano/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/genética , Ductos Paramesonéfricos , Desenvolvimento Sexual , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética
4.
J Endocr Soc ; 5(11): bvab145, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34589657

RESUMO

The diagnosis of male central (or hypogonadotropic) hypogonadism, typically based on low luteinizing hormone (LH) and testosterone levels, is challenging during childhood since both hormones are physiologically low from the sixth month until the onset of puberty. Conversely, follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH), which show higher circulating levels during infancy and childhood, are not used as biomarkers for the condition. We report the case of a 7-year-old boy with a history of bilateral cryptorchidism who showed repeatedly low FSH and AMH serum levels during prepuberty. Unfortunately, the diagnosis could not be ascertained until he presented with delayed puberty at the age of 14 years. A gonadotropin-releasing hormone (GnRH) test showed impaired LH and FSH response. By then, his growth and bone mineralization were partially impaired. Gene panel sequencing identified a variant in exon 15 of FGFR1, affecting the tyrosine kinase domain of the receptor, involved in GnRH neuron migration and olfactory bulb morphogenesis. Testosterone replacement was started, which resulted in the development of secondary sexual characteristics and partial improvement of bone mineral density. This case illustrates the difficulty in making the diagnosis of central hypogonadism in boys during childhood based on classical criteria, and how serum FSH and AMH assessment may be helpful if it is suspected before the age of puberty, and confirm it using next-generation sequencing. The possibility of making an early diagnosis of central hypogonadism may be useful for a timely start of hormone replacement therapy, and to avoid delays that could affect growth and bone health as well as psychosocial adjustment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...