Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiology ; 312(1): e232731, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012246

RESUMO

Background Current clinical imaging modalities such as CT and MRI provide resolution adequate to diagnose cardiovascular diseases but cannot depict detailed structural features in the heart across length scales. Hierarchical phase-contrast tomography (HiP-CT) uses fourth-generation synchrotron sources with improved x-ray brilliance and high energies to provide micron-resolution imaging of intact adult organs with unprecedented detail. Purpose To evaluate the capability of HiP-CT to depict the macro- to microanatomy of structurally normal and abnormal adult human hearts ex vivo. Materials and Methods Between February 2021 and September 2023, two adult human donor hearts were obtained, fixed in formalin, and prepared using a mixture of crushed agar in a 70% ethanol solution. One heart was from a 63-year-old White male without known cardiac disease, and the other was from an 87-year-old White female with a history of multiple known cardiovascular pathologies including ischemic heart disease, hypertension, and atrial fibrillation. Nondestructive ex vivo imaging of these hearts without exogenous contrast agent was performed using HiP-CT at the European Synchrotron Radiation Facility. Results HiP-CT demonstrated the capacity for high-spatial-resolution, multiscale cardiac imaging ex vivo, revealing histologic-level detail of the myocardium, valves, coronary arteries, and cardiac conduction system across length scales. Virtual sectioning of the cardiac conduction system provided information on fatty infiltration, vascular supply, and pathways between the cardiac nodes and adjacent structures. HiP-CT achieved resolutions ranging from gross (isotropic voxels of approximately 20 µm) to microscopic (approximately 6.4-µm voxel size) to cellular (approximately 2.3-µm voxel size) in scale. The potential for quantitative assessment of features in health and disease was demonstrated. Conclusion HiP-CT provided high-spatial-resolution, three-dimensional images of structurally normal and diseased ex vivo adult human hearts. Whole-heart image volumes were obtained with isotropic voxels of approximately 20 µm, and local regions of interest were obtained with resolution down to 2.3-6.4 µm without the need for sectioning, destructive techniques, or exogenous contrast agents. Published under a CC BY 4.0 license Supplemental material is available for this article. See also the editorial by Bluemke and Pourmorteza in this issue.


Assuntos
Coração , Tomografia Computadorizada por Raios X , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Coração/diagnóstico por imagem , Idoso de 80 Anos ou mais , Cardiopatias/diagnóstico por imagem , Síncrotrons
2.
J Synchrotron Radiat ; 31(Pt 3): 566-577, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682274

RESUMO

Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation-matter interactions in these applications.


Assuntos
Síncrotrons , Raios X , Animais , Gases/química , Cromatografia Gasosa/métodos , Etanol/química
4.
IEEE Trans Biomed Eng ; 68(10): 2918-2929, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523804

RESUMO

OBJECTIVE: Aortic dissection is a life-threatening event which starts most of the time with an intimal tear propagating along the aortic wall, while blood enters the medial layer and delaminates the medial lamellar units. Studies investigating the mechanisms underlying the initiation sequence of aortic dissection are rare in the literature, the majority of studies being focused on the propagation event. Numerical models can provide a deeper understanding of the phenomena involved during the initiation and the propagation of the initial tear, and how geometrical and mechanical parameters affect this event. In the present paper, we investigated the primary factors contributing to aortic dissection. METHODS: A two-layer arterial model with an initial tear was developed, representing three different possible configurations depending on the initial direction of the tear. Anisotropic damage initiation criteria were developed based on uniaxial and shear experiments from the literature to predict the onset and the direction of crack propagation. We used the XFEM-based cohesive segment method to model the initiation and the early propagation of the tear along the aorta. A design of experiment was used to quantify the influence of 7 parameters reflecting crack geometry and mechanics of the wall on the critical pressure triggering the dissection and the directions of propagation of the tear. RESULTS: The results showed that the obtained critical pressures (mean range from 206 to 251 mmHg) are in line with measurement from the literature. The medial tensile strength was found to be the most influential factor, suggesting that a medial degeneration is needed to reach a physiological critical pressure and to propagate a tear in an aortic dissection. The geometry of the tear and its location inside the aortic wall were also found to have an important role not only in the triggering of tear propagation, but also in the evolution of the tear into either aortic rupture or aortic dissection. A larger and deeper initial tear increases the risk of aortic dissection. CONCLUSION: The numerical model was able to reproduce the behaviour of the aorta during the initiation and propagation of an aortic dissection. In addition to confirm multiple results from the literature, different types of tears were compared and the influence of several geometrical and mechanical parameters on the critical pressure and direction of propagation was evaluated with a parametric study for each tear configuration. SIGNIFICANCE: Although these results should be experimentally validated, they allow a better understanding of the phenomena behind aortic dissection and can help in improving the diagnosis and treatment of this disease.


Assuntos
Dissecção Aórtica , Dissecção Aórtica/diagnóstico por imagem , Aorta , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração
5.
IEEE Rev Biomed Eng ; 14: 240-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31905148

RESUMO

Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.


Assuntos
Aorta , Dissecção Aórtica , Fenômenos Biomecânicos/fisiologia , Dissecção Aórtica/patologia , Dissecção Aórtica/fisiopatologia , Animais , Aorta/patologia , Aorta/fisiopatologia , Bovinos , Humanos , Camundongos , Modelos Cardiovasculares , Resistência ao Cisalhamento/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...