Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(1): 128-141, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838287

RESUMO

The present research aims at giving an approach to the issue of surface water contamination due to micropollutants in rural areas. The catchment of the Sûre river was selected as a reference case for the Greater Region, characterized mainly by settlements with low population density, small water bodies and small- to medium-sized wastewater treatment plants (WWTPs). For these WWTPs, conventional technical solutions for micropollutant elimination are not suitable; therefore, an adapted mitigation strategy is needed to prevent the impact of micropollutants, especially during the dry season. As a suitable alternative to more intensive technologies, Constructed Wetlands (CW) in Vertical Flow (VF) configuration have been successfully tested over a 1-year period and the elimination rate of 27 micropollutants was quantified. Emission reduction by VF was then considered in a static mass balance model that calculates the longitudinal concentration profile for the entire river catchment. The EmiSûre approach, which focuses on river quality (concentrations of pollutants) instead of emitted loads, effectively allowed simulation of adopted measures a priori and resulted in efficient support for decision-makers with WWTP upgrade scenarios.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
J Environ Manage ; 318: 115593, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772272

RESUMO

The focus of this study is the characterization of unconventional sand-based substrates used in our previous project EmiSûre, (Interreg Greater Region (German federal states Rhineland-Palatinate and Saarland, the Grand Duchy of Luxembourg, regions Wallonia and Lorraine from Belgium and France, respectively), 2017-2021). The project aimed to develop and test alternative, nature-based technologies for the elimination of micropollutants (MPs) from municipal wastewater. For the characterization, two approaches were chosen. In the first approach, adsorption kinetics with a single compound allowed a perception of the adsorption capacity of the studied substrates compared to conventional substrates (granular activated carbons). This knowledge was completed by the second approach: an implementation of the studied substrates in packed-bed columns, which treated a mixture of 27 MPs in tap water for 10 months. Additionally, all three substrates (bentonite sand, sand with 15% activated biochar and sand with 15% zeolite) were characterized for physical and chemical properties, and the microbial potential of the activated and non-activated biochar was examined. From the studies, it is clear that the sand with an admixture of activated biochar is the most efficient sorbent in terms of single compound adsorption in batch (dye) and adsorption of 27 MPs on packed-bed columns. In contrast to the two other substrates, it shows long-term stable removal efficiencies. In the packed-bed columns, 18 out of 27 compounds were removed on average with high efficiency (80-99%), which is impressive, if we consider the variety of the compounds examined (pharmaceuticals, herbicides, pesticides, etc.) and their removal in conventional treatments. Additionally, adsorption models were created for the experimental data of all compounds adsorbed on the substrate with an admixture of activated biochar resulting in the best fit with the combined Langmuir-Freundlich model. These satisfying results suggest the application of the sand-based substrate with an admixture of activated biochar for further research and possibly upscale installations with the aim to offer and prove a reasonable and efficient alternative for MPs elimination from municipal wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Cinética , Areia , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Sci Total Environ ; 819: 153234, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051485

RESUMO

Six substrates (i.e. sand enriched with activated or non-activated biochar or zeolite in different ratios) were tested in Vertical Flow Constructed Wetlands (VFCWs) planted with Phragmites australis and Iris pseudacorus for the removal of 27 emerging contaminants from municipal wastewater. The laboratory investigation under controlled conditions (spiked constant concentrations in synthetic wastewater) lasted 357 days and proved VFCWs being able to provide excellent effluent quality in terms of both macro - and micropollutant elimination. Because overall removal efficiencies exceeded 90% in most of the cases, significant differences among the substrates were not detectable. For compounds with medium elimination (i.e. AMPA) the type of substrate seemed to play a strong role and the maximum amount of active ingredient adsorbed per amount of substrate has been quantified (i.e. 0.77 µg of AMPA per g of 30% biochar mixed with sand). Three of the most promising substrates from laboratory where thus selected to be tested under real conditions (fluctuation in concentration, variable temperature). As result, VFCWs with 15% activated biochar mixed with sand proved to be effective in the removal of 18 emerging contaminants and complying with national discharge standards for 4 selected compounds.


Assuntos
Águas Residuárias , Zeolitas , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Áreas Alagadas
4.
Chemosphere ; 281: 130980, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289626

RESUMO

In this work, the primary focus is given on a mixture of 27 micropollutants (pharmaceuticals, pesticides, herbicides, fungicides and others) and its removal from aqueous solution by phytoremediation. Phytoremediation belongs to technologies, which are contributing on removal of micropollutants from wastewater in constructed wetlands. Constructed wetlands can be used as an additional step for elimination of micropollutants from municipal medium-sized wastewater treatment plants. To our knowledge, such a broad variety of micropollutants was never targeted for removal by phytoremediation before. In this work, we carry out experiments with 3 emergent macrophytes: Phragmites australis, Iris pseudacorus and Lythrum salicaria in hydroponic conditions. The selected plants are exposed to mixture of micropollutants in concentrations 1-14 mg/l for a time period of 30 days. The highest affinity for phytoremediation is detected at groups of fluorosurfactants (removal rate up to 30%), beta-blockers (removal rate up to 50%) and antibiotics (removal rate up to 90%). The leading capability for micropollutant uptake is detected at Lythrum salicaria, where 25 out of 27 compounds are removed with more than 20% efficiency. The results demonstrate well usefulness of this technology e.g. in an additional treatment step, because the mentioned groups of micropollutants are removed with comparable or even higher effectivity, than it is in case of conventional wastewater treatment plants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Hidroponia , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...