Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 112: 103496, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796881

RESUMO

Sea urchin's survival may depend on their capacity to recover proper orientation rapidly and effectively after inversion, enabling escape from predator and preventing desiccation. This righting behavior has been used as a repeatable and reliable indicator to assess echinoderms performance across environmental conditions, including thermal sensitivity and thermal stress. The current study aims at evaluating and comparing the thermal reaction norm for righting behavior (time for righting (TFR) and capacity to self-right) of three common sea urchins from high latitude, the Patagonian sea urchins Loxechinus albus and Pseudechinus magellanicus, and the Antarctic sea urchin Sterechinus neumayeri. In addition, to infer the ecological implications of our experiments, we compared laboratory-based and in situ TFR of these three species. We observed that populations of the Patagonian sea urchins L. albus and P. magellanicus presented similar trend of righting behavior, overly accelerating with increasing temperature (from 0 to 22°C). Little variations and high inter-individual variability were observed below 6°C in the Antarctic sea urchin TFR, and righting success strongly decreased between 7 and 11°C. For the three species, TFR was lower in in situ experiments compared to the laboratory. Overall, our results suggest that the populations of Patagonian sea urchin exhibit a wide thermal tolerance and, based on S. neumayeri's TFR, aligning with the narrow thermal tolerance of Antarctic benthos. Finally, the differences between laboratory and in situ experiments highlights the importance of considering the complexity of marine environments for future predictions.


Assuntos
Ouriços-do-Mar , Animais , Regiões Antárticas , Temperatura
2.
Biology (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671820

RESUMO

Ice scouring is one of the strongest agents of disturbance in nearshore environments at high latitudes. In depths, less than 20 m, grounding icebergs reshape the soft-sediment seabed by gouging furrows called ice pits. Large amounts of drift algae (up to 5.6 kg/m2) that would otherwise be transported to deeper water accumulate inside these features, representing an underestimated subsidy. Our work documents the distribution and dimensions of ice pits in Fildes Bay, Antarctica, and evaluates their relationship to the biomass and species composition of algae found within them. It also assesses the rates of deposition and advective loss of algae in the pits. The 17 ice pits found in the study area covered only 4.2% of the seabed but contained 98% of drift algal biomass, i.e., 60 times the density (kg/m2) of the surrounding seabed. Larger ice pits had larger and denser algal accumulations than small pits and had different species compositions. The accumulations were stable over time: experimentally cleared pits regained initial biomass levels after one year, and advective loss was less than 15% annually. Further research is needed to understand the impacts of ice scouring and subsequent algal retention on ecosystem functioning in this rapidly changing polar environment.

3.
Environ Pollut ; 292(Pt A): 118365, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656678

RESUMO

Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.


Assuntos
Alga Marinha , Poluentes Químicos da Água , Regiões Antárticas , Monitoramento Biológico , Clorofila A , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise
4.
Mar Environ Res ; 159: 104991, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662431

RESUMO

Glacier meltdown is a major environmental response to climate change in the West Antarctic Peninsula. Yet, the consequences of this process for local biodiversity are still not well understood. Here, we analyse the diversity and structure of a species-rich marine subtidal macrobenthic community (consumers and primary producers) across two abiotic environmental gradients defined by the distance from a glacier (several km) and depth (between 5 and 20 m depth) in Fildes Bay, King George Island. The analysis of spatially extensive records of seawater turbidity, high-frequency temperature and salinity data, and suction dredge samples of macrobenthic organisms revealed non-linear and functional group-dependent associations between biodiversity, glacier influence, and depth. Turbidity peaked in shallow waters and in the nearby of the glacier. Temperature and salinity, on the other hand, slightly decreased in the proximity of the glacier relative to reference sites. According to the spatial pattern in turbidity, species richness of consumers was lowest in shallow waters and near to the glacier. Also, Shannon's diversity of consumers significantly decreased in the nearby of glacier across depths. Moreover, the spatial variation in community structure of consumers and primary producers depended on both glacier distance and depth. These results suggest that glacier melting can have significant effects on diversity and community structure. Therefore, the accelerated glacier meltdown may have major consequences for the biodiversity in this ecosystem.


Assuntos
Biodiversidade , Ecossistema , Camada de Gelo , Animais , Regiões Antárticas , Ilhas
5.
Sci Rep ; 10(1): 5552, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218472

RESUMO

Global biodiversity is both declining and being redistributed in response to multiple drivers characterizing the Anthropocene, including synergies between biological invasions and climate change. The Antarctic marine benthos may constitute the last biogeographic realm where barriers (oceanographic currents, climatic gradients) have not yet been broken. Here we report the successful settlement of a cohort of Mytilus cf. platensis in a shallow subtidal habitat of the South Shetland Islands in 2019, which demonstrates the ability of this species to complete its early life stages in this extreme environment. Genetic analyses and shipping records show that this observation is consistent with the dominant vectors and pathways linking southern Patagonia with the Antarctic Peninsula and demonstrates the potential for impending invasions of Antarctic ecosystems.


Assuntos
Bivalves/classificação , Bivalves/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA Ribossômico 16S/genética , Animais , Regiões Antárticas , Biodiversidade , Mudança Climática , Espécies Introduzidas , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA/métodos , América do Sul
6.
Sci Rep ; 6: 36516, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805042

RESUMO

The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates.


Assuntos
Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Ouriços-do-Mar , Testículo/metabolismo , Transcriptoma/fisiologia , Animais , Masculino , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...