Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1213265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521687

RESUMO

Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.

2.
Biosens Bioelectron ; 222: 114942, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493722

RESUMO

Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 µM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.


Assuntos
Bioimpressão , Técnicas Biossensoriais , Óxido de Zinco , Humanos , Dopamina , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Brain Struct Funct ; 226(5): 1533-1551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33844052

RESUMO

Hearing deficits impact on the communication with the external world and severely compromise perception of the surrounding. Deafness can be caused by particular mutations in the neuroplastin (Nptn) gene, which encodes a transmembrane recognition molecule of the immunoglobulin (Ig) superfamily and plasma membrane Calcium ATPase (PMCA) accessory subunit. This study investigates whether the complete absence of neuroplastin or the loss of neuroplastin in the adult after normal development lead to hearing impairment in mice analyzed by behavioral, electrophysiological, and in vivo imaging measurements. Auditory brainstem recordings from adult neuroplastin-deficient mice (Nptn-/-) show that these mice are deaf. With age, hair cells and spiral ganglion cells degenerate in Nptn-/- mice. Adult Nptn-/- mice fail to behaviorally respond to white noise and show reduced baseline blood flow in the auditory cortex (AC) as revealed by single-photon emission computed tomography (SPECT). In adult Nptn-/- mice, tone-evoked cortical activity was not detectable within the primary auditory field (A1) of the AC, although we observed non-persistent tone-like evoked activities in electrophysiological recordings of some young Nptn-/- mice. Conditional ablation of neuroplastin in Nptnlox/loxEmx1Cre mice reveals that behavioral responses to simple tones or white noise do not require neuroplastin expression by central glutamatergic neurons. Loss of neuroplastin from hair cells in adult NptnΔlox/loxPrCreERT mice after normal development is correlated with increased hearing thresholds and only high prepulse intensities result in effective prepulse inhibition (PPI) of the startle response. Furthermore, we show that neuroplastin is required for the expression of PMCA 2 in outer hair cells. This suggests that altered Ca2+ homeostasis underlies the observed hearing impairments and leads to hair cell degeneration. Our results underline the importance of neuroplastin for the development and the maintenance of the auditory system.


Assuntos
Audição , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
4.
Commun Biol ; 3(1): 345, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620808

RESUMO

The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva , Potenciais Evocados Auditivos , Gerbillinae/fisiologia , Análise e Desempenho de Tarefas , Animais , Comportamento Animal , Masculino
5.
J Physiol ; 598(13): 2741-2755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329905

RESUMO

KEY POINTS: Ketamine is a common anaesthetic agent used in research and more recently as medication in treatment of depression. It has known effects on inhibition of interneurons and cortical stimulus-locked responses, but the underlying functional network mechanisms are still elusive. Analysing population activity across all layers within the auditory cortex, we found that doses of this anaesthetic induce a stronger activation and stimulus-locked response to pure-tone stimuli. This cortical response is driven by gain enhancement of thalamocortical input processing selectively within granular layers due to an increased recurrent excitation. Time-frequency analysis indicates a higher broadband magnitude response and prolonged phase coherence in granular layers, possibly pointing to disinhibition of this recurrent excitation. These results further the understanding of ketamine's functional mechanisms, which will improve the ability to interpret physiological studies moving from anaesthetized to awake paradigms and may lead to the development of better ketamine-based depression treatments with lower side effects. ABSTRACT: Ketamine is commonly used as an anaesthetic agent and has more recently gained attention as an antidepressant. It has been linked to increased stimulus-locked excitability, inhibition of interneurons and modulation of intrinsic neuronal oscillations. However, the functional network mechanisms are still elusive. A better understanding of these anaesthetic network effects may improve upon previous interpretations of seminal studies conducted under anaesthesia and have widespread relevance for neuroscience with awake and anaesthetized subjects as well as in medicine. Here, we investigated the effects of anaesthetic doses of ketamine (15 mg kg-1  h-1 i.p.) on the network activity after pure-tone stimulation within the auditory cortex of male Mongolian gerbils (Meriones unguiculatus). We used laminar current source density (CSD) analysis and subsequent layer-specific continuous wavelet analysis to investigate spatiotemporal response dynamics on cortical columnar processing in awake and ketamine-anaesthetized animals. We found thalamocortical input processing within granular layers III/IV to be significantly increased under ketamine. This layer-dependent gain enhancement under ketamine was not due to changes in cross-trial phase coherence but was rather attributed to a broadband increase in magnitude reflecting an increase in recurrent excitation. A time-frequency analysis was indicative of a prolonged period of stimulus-induced excitation possibly due to a reduced coupling of excitation and inhibition in granular input circuits - in line with the common hypothesis of cortical disinhibition via suppression of GABAergic interneurons.


Assuntos
Anestesia , Córtex Auditivo , Ketamina , Animais , Gerbillinae , Humanos , Ketamina/farmacologia , Masculino , Neurônios
6.
Eur J Neurosci ; 51(5): 1315-1327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514417

RESUMO

Cortical release of the neurotransmitter dopamine has been implied in adapting cortical processing with respect to various functions including coding of stimulus salience, expectancy, error prediction, behavioral relevance and learning. Dopamine agonists have been shown to modulate recurrent cortico-thalamic feedback, and should therefore also affect synchronization and amplitude of thalamo-cortical oscillations. In this study, we have used multitaper spectral and time-frequency analysis of stimulus-evoked and spontaneous current source density patterns in primary auditory cortex of Mongolian gerbils to characterize dopaminergic neuromodulation of the oscillatory structure of current sources and sinks. We systemically applied D1/D5-receptor agonist SKF-38393 followed by competitive D1/D5-receptor antagonist SCH-23390. Our results reveal an increase in stimulus phase-locking in the high gamma-band (88-97 Hz) by SKF-38393, specifically in layers III/IV at the best frequency, which occurred at 20 ms after tone onset, and was reversed by SCH-23390. However, changes in induced oscillatory power after SKF-38393 treatment occurred stimulus-independently in the background activity in different layers than phase-locking effects and were not reversed by SCH-23390. These effects might either reflect longer-lasting changes in neural background noise, non-specific changes due to ketamine anesthesia, or an interaction of both. Without concomitant stimulus-induced power increase, increased stimulus phase-locking in layers III/IV indicates enhanced phase-resetting of neural oscillations by the stimulus after D1/D5-receptor activation. The frequency characteristics, together with the demonstrated stimulus specificity and layer specificity, suggest that changes in phase-resetting originate from dopaminergic neuromodulation of thalamo-cortical interactions. Enhanced phase-resetting might be a key step in the recruitment of cortical activity modes interpreting sensory input.


Assuntos
Córtex Auditivo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Dopamina , Gerbillinae , Receptores de Dopamina D1
7.
Sci Rep ; 9(1): 20385, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892726

RESUMO

Reward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration. Therefore, we investigated the temporal effects of direct optogenetic stimulation of the VTA onto spectral integration in the auditory cortex on a synaptic circuit level by current-source-density analysis in anesthetized Mongolian gerbils. While auditory lemniscal input predominantly terminates in the granular input layers III/IV, we found that VTA-mediated modulation of spectral processing is relayed by a different circuit, namely enhanced thalamic inputs to the infragranular layers Vb/VIa. Activation of this circuit yields a frequency-specific gain amplification of local sensory input and enhances corticocortical information transfer, especially in supragranular layers I/II. This effects persisted over more than 30 minutes after VTA stimulation. Altogether, we demonstrate that the VTA exhibits a long-lasting influence on sensory cortical processing via infragranular layers transcending the signaling of a mere reward-prediction error. We thereby demonstrate a cellular and circuit substrate for the influence of reinforcement-evaluating brain systems on sensory processing in the auditory cortex.


Assuntos
Córtex Auditivo/fisiologia , Tálamo/fisiologia , Área Tegmentar Ventral/fisiologia , Estimulação Acústica , Animais , Gerbillinae , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...