Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 8(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36135416

RESUMO

We study the performance of CLAIRE-a diffeomorphic multi-node, multi-GPU image-registration algorithm and software-in large-scale biomedical imaging applications with billions of voxels. At such resolutions, most existing software packages for diffeomorphic image registration are prohibitively expensive. As a result, practitioners first significantly downsample the original images and then register them using existing tools. Our main contribution is an extensive analysis of the impact of downsampling on registration performance. We study this impact by comparing full-resolution registrations obtained with CLAIRE to lower resolution registrations for synthetic and real-world imaging datasets. Our results suggest that registration at full resolution can yield a superior registration quality-but not always. For example, downsampling a synthetic image from 10243 to 2563 decreases the Dice coefficient from 92% to 79%. However, the differences are less pronounced for noisy or low contrast high resolution images. CLAIRE allows us not only to register images of clinically relevant size in a few seconds but also to register images at unprecedented resolution in reasonable time. The highest resolution considered are CLARITY images of size 2816×3016×1162. To the best of our knowledge, this is the first study on image registration quality at such resolutions.

2.
J Parallel Distrib Comput ; 149: 149-162, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33380769

RESUMO

3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss-Newton-Krylov solver for diffeomorphic registration of two images. Our work extends the publicly available CLAIRE library to GPU architectures. Despite the importance of image registration, only a few implementations of large deformation diffeomorphic registration packages support GPUs. Our contributions are new algorithms to significantly reduce the run time of the two main computational kernels in CLAIRE: calculation of derivatives and scattered-data interpolation. We deploy (i) highly-optimized, mixed-precision GPU-kernels for the evaluation of scattered-data interpolation, (ii) replace Fast-Fourier-Transform (FFT)-based first-order derivatives with optimized 8th-order finite differences, and (iii) compare with state-of-the-art CPU and GPU implementations. As a highlight, we demonstrate that we can register 2563 clinical images in less than 6 seconds on a single NVIDIA Tesla V100. This amounts to over 20× speed-up over the current version of CLAIRE and over 30× speed-up over existing GPU implementations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35295546

RESUMO

CLAIRE (Mang & Biros, 2019) is a computational framework for Constrained LArge deformation diffeomorphic Image REgistration (Mang et al., 2019). It supports highly-optimized, parallel computational kernels for (multi-node) CPU (Gholami et al., 2017; Mang et al., 2019; Mang & Biros, 2016) and (multi-node multi-)GPU architectures (Brunn et al., 2020, 2021). CLAIRE uses MPI for distributed-memory parallelism and can be scaled up to thousands of cores (Mang et al., 2019; Mang & Biros, 2016) and GPU devices (Brunn et al., 2020). The multi-GPU implementation uses device direct communication. The computational kernels are interpolation for semi-Lagrangian time integration, and a mixture of high-order finite difference operators and Fast-Fourier-Transforms (FFTs) for differentiation. CLAIRE uses a Newton-Krylov solver for numerical optimization (Mang & Biros, 2015, 2017). It features various schemes for regularization of the control problem (Mang & Biros, 2016) and different similarity measures. CLAIRE implements different preconditioners for the reduced space Hessian (Brunn et al., 2020; Mang et al., 2019) to optimize computational throughput and enable fast convergence. It uses PETSc (Balay et al., n.d.) for scalable and efficient linear algebra operations and solvers and TAO (Balay et al., n.d.; Munson et al., 2015) for numerical optimization. CLAIRE can be downloaded at https://github.com/andreasmang/claire.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35295823

RESUMO

We present a Gauss-Newton-Krylov solver for large deformation diffeomorphic image registration. We extend the publicly available CLAIRE library to multi-node multi-graphics processing unit (GPUs) systems and introduce novel algorithmic modifications that significantly improve performance. Our contributions comprise (i) a new preconditioner for the reduced-space Gauss-Newton Hessian system, (ii) a highly-optimized multi-node multi-GPU implementation exploiting device direct communication for the main computational kernels (interpolation, high-order finite difference operators and Fast-Fourier-Transform), and (iii) a comparison with state-of-the-art CPU and GPU implementations. We solve a 2563-resolution image registration problem in five seconds on a single NVIDIA Tesla V100, with a performance speedup of 70% compared to the state-of-the-art. In our largest run, we register 20483 resolution images (25 B unknowns; approximately 152× larger than the largest problem solved in state-of-the-art GPU implementations) on 64 nodes with 256 GPUs on TACC's Longhorn system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...