Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 31(2): 491-504, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825104

RESUMO

Dendritic cells (DCs) involved in proinflammatory immune responses derive mainly from peripheral monocytes, and the cells subsequently mature and migrate into the inflammatory micromilieu. Here we report that suppressing of 15-lipoxygenase-1 led to a substantial reduction in DC spreading and podosome formation in vitro. The surface expression of CD83 was significantly lower in both sh-15-lipoxygenase-1 (15-LOX-1)-transduced cells and DCs cultivated in the presence of a novel specific 15-LOX-1 inhibitor. The T-cell response against tetanus-pulsed DCs was only affected to a minor extent on inhibition of 15-LOX-1. In contrast, endocytosis and migration ability of DCs were significantly suppressed on 15-LOX-1 inhibition. The expression of 15-LOX-1 in DCs was also demonstrated in affected human skin in atopic and contact dermatitis, showing that the enzyme is indeed expressed in inflammatory diseases in vivo. This study demonstrated that inhibiting 15-LOX-1 led to an impaired podosome formation in DCs, and consequently suppressed antigen uptake and migration capacity. These results indicated that 15-LOX-1 is a potential target for inhibiting the trafficking of DCs to lymphoid organs and inflamed tissues and decreasing the inflammatory response attenuating symptoms of certain immunologic and inflammatory disorders such as dermatitis.-Han, H., Liang, X., Ekberg, M., Kritikou, J. S., Brunnström, Å., Pelcman, B., Matl, M., Miao, X., Andersson, M., Yuan, X., Schain, F., Parvin, S., Melin, E., Sjöberg, J., Xu, D., Westerberg, L. S., Björkholm, M., Claesson, H.-E. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Citocinas/metabolismo , Células Dendríticas/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Podossomos/fisiologia , Araquidonato 15-Lipoxigenase/genética , Movimento Celular/fisiologia , Citocinas/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Células de Langerhans/metabolismo , Monócitos , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
2.
Int J Clin Pharmacol Ther ; 53(10): 838-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26329350

RESUMO

OBJECTIVE: To characterize the absorption, distribution, metabolism, and excretion of naloxegol, a PEGylated derivative of the µ-opioid antagonist naloxone, in healthy male subjects. MATERIALS AND METHODS: [14C]-Labeled naloxegol (27 mg, 3.43 MBq) was administered as an oral solution to 6 fasted subjects. Blood, fecal, and urine samples were collected predose and at various intervals postdose. Naloxegol and its metabolites were quantified or identified by liquid chromatography with radiometric or mass spectrometric detection. Pharmacokinetic parameters were calculated for each subject, and metabolite identification was performed by liquid chromatography with parallel radioactivity measurement and mass spectrometry. RESULTS: Naloxegol was rapidly absorbed, with a maximum plasma concentration (geometric mean) of 51 ng/mL reached before 2 hours after dosing. A second peak in the observed naloxegol and [14C] plasma concentration-time profiles was observed at ~3 hours and was likely due to enterohepatic recycling of parent naloxegol. Distribution to red blood cells was negligible. Metabolism of [14C]-naloxegol was rapid and extensive and occurred via demethylation and oxidation, dealkylation, and shortening of the polyethylene glycol chain. Mean cumulative recovery of radioactivity was 84.2% of the total dose, with ~68.9% recovered within 96 hours of dosing. Fecal excretion was the predominant route of elimination, with mean recoveries of total radioactivity in feces and urine of 67.7% and 16.0%, respectively. Unchanged naloxegol accounted for ~1/4 of the radioactivity recovered in feces. CONCLUSIONS: Naloxegol was rapidly absorbed and cleared via metabolism, with predominantly fecal excretion of parent and metabolites.


Assuntos
Morfinanos/farmacocinética , Antagonistas de Entorpecentes/farmacocinética , Polietilenoglicóis/farmacocinética , Idoso , Radioisótopos de Carbono , Humanos , Masculino , Pessoa de Meia-Idade , Morfinanos/efeitos adversos , Polietilenoglicóis/efeitos adversos , Distribuição Tecidual
3.
Prostaglandins Other Lipid Mediat ; 121(Pt A): 83-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026713

RESUMO

Several lines of evidence indicate that 15-lipoxygenase type 1 (15-LO-1) plays a pathophysiological role in asthma. The aim for this study was to investigate the 15-LO-1 expression and activity in primary human airway epithelial cells cultivated on micro-porous filters at air-liquid interface. Incubation of human airway epithelial cells with arachidonic acid led to the formation of 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and exposing the cells to bacteria or physical injury markedly increased their production of 15-HETE. The cells were also found to convert arachidonic acid to eoxin C4 (EXC4). Subcellular fractionation revealed that the conversion of EXA4 to EXC4 was catalyzed by a soluble glutathione transferase (GST). The GST P1-1 enzyme was found to possess the highest activity of the investigated soluble GSTs. Following IL-4 treatment of airway epithelial cells, microarray analysis confirmed high expression of 15-LO-1 and GST P1-1, and immunohistochemical staining of bronchial biopsies revealed co-localization of 15-LO-1 and GST P1-1 in airway epithelial cells. These results indicate that respiratory infection and cell injury may activate the 15-LO pathway in airway epithelial cells. Furthermore, we also demonstrate that airway epithelial cells have the capacity to produce EXC4.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Leucotrienos/biossíntese , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Biocatálise , Linhagem Celular , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Transporte Proteico , Solubilidade
4.
Chem Res Toxicol ; 27(4): 601-10, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24593263

RESUMO

The recent stream of regulatory guidelines on the Safety Testing of Drug Metabolites by the FDA in 2008 and the ICH in 2009 and 2012 has cast light on the importance of qualifying metabolite exposure as part of the safety evaluation of new drugs and has provided a much needed framework for the drug safety researcher. Since then, numerous publications interpreting the practicalities of the guidelines have appeared in the literature focusing on strategic approaches and/or adaptation of modern analytical methodologies, e.g., NMR and AMS, for the identification and quantification of metabolites in the species used in preclinical safety assessments and in humans. Surprisingly, there are few literature accounts demonstrating how, in practice, a particular strategy or analytical method has been used to qualify drug metabolites during the safety evaluation of a drug during clinical development. At the same time as the initial FDA and ICH guideline releases, the neuroscience therapy area of AstraZeneca had a number of projects in clinical development, or approaching this phase, which gave the authors a scaffold upon which to build knowledge regarding the safety testing of drug metabolites. In this article, we present how the MIST strategy was developed to meet the guidelines. Pragmatic approaches have evolved from the experience learned in various projects in DMPK at AstraZeneca, Södertälje, Sweden. Our experience dictates that there is no single strategy for qualifying the safety of drug metabolites in humans; however, all activities should be tied to two unifying themes: first that the exposure to drug metabolites should be compared between species at repeated administration using the relative method or a similar one; and second that the internal regulatory documentation of the metabolite qualification should be agnostic to external criteria (guidelines), indication, dose given, and timing.


Assuntos
Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Farmacocinética , Animais , Área Sob a Curva , Citocromo P-450 CYP2D6/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Estados Unidos , United States Food and Drug Administration
5.
Int Arch Allergy Immunol ; 162(2): 135-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23921438

RESUMO

BACKGROUND: The effect of aspirin on the release of key arachidonic acid metabolites in activated eosinophils from subjects with aspirin-intolerant asthma (AIA) has not been investigated previously, despite the characteristic eosinophilia in AIA. METHODS: Peripheral blood eosinophils were isolated from four groups of subjects: healthy volunteers (HV; n = 8), mild asthma (MA; n = 8), severe asthma (SA; n = 9) and AIA (n = 7). In the absence or presence of lysine-aspirin, eosinophils were stimulated with arachidonic acid or calcium ionophore to trigger the 15-lipoxygenase-1 (15-LO) and 5-lipoxygenase (5-LO) pathways, respectively. 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and eoxin C4 (EXC4) were measured as 15-LO products and leukotriene (LT)C4 as a product of the 5-LO pathway. RESULTS: Activated eosinophils from patients with SA and AIA produced approximately five times more 15-HETE than eosinophils from HV or MA patients. In the presence of lysine-aspirin, eosinophils from AIA, MA and SA patients generated higher levels of 15-HETE than in the absence of lysine-aspirin. Furthermore, in the presence of lysine-aspirin, formation of EXC4 was also significantly increased in eosinophils from AIA patients, and LTC4 synthesis was increased both in AIA and SA patients. CONCLUSIONS: Taken together, this study shows an increased release of the recently discovered lipid mediator EXC4, as well as the main indicator of 15-LO activity, 15-HETE, in activated eosinophils from severe and aspirin-intolerant asthmatics, and also elevated EXC4 and LTC4 formation in eosinophils from AIA patients after cellular activation in the presence of lysine-aspirin. The findings support a pathophysiological role of the 15-LO pathway in SA and AIA.


Assuntos
Aspirina/efeitos adversos , Asma Induzida por Aspirina/imunologia , Eosinófilos/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno C4/metabolismo , Leucotrienos/metabolismo , Adulto , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Aspirina/imunologia , Asma Induzida por Aspirina/metabolismo , Eosinófilos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-22921794

RESUMO

Human 15-lipoxygenase-1 (LO) possesses mainly 15-lipoxygenase activity whereas the animal ortholog 12/15-LO possesses mainly 12-lipoxygenase activity. These findings have raised the question if studies on animals can predict the function of 15-LO-1 in human. In this study we have characterized the arachidonic acid metabolites formed by porcine 12/15-LO. Mini pigs were infected with a parasite to increase the number of blood eosinophils, which highly express 12/15-LO. Isolated porcine polymorphonuclear leukocytes (PMNL) were incubated with arachidonic acid and the produced metabolites were analysed with HPLC and mass spectrometry (MS). The cells were found to produce 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE at a ratio of 1:5. Furthermore 8,15-dihydroxyeicosatetraenoic acids (DiHETEs) and 14,15-DiHETE were formed. Based on HPLC, UV-spectroscopy and MS analysis it was found that porcine PMNL also produced eoxin (EX) C4. These results demonstrate that although porcine 12/15-LO possesses primarily 12-lipoxygenase activity, the enzyme can catalyse the formation of EXC(4).


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Leucócitos/metabolismo , Leucotrienos/biossíntese , Animais , Ácido Araquidônico/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Neutrófilos/metabolismo , Suínos
7.
Lipids ; 47(8): 781-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684912

RESUMO

Human 15-lipoxygenase-1 (15-LO-1) can metabolize arachidonic acid (ARA) into pro-inflammatory mediators such as the eoxins, 15-hydroperoxyeicosatetraenoic acid (HPETE), and 15-hydroxyeicosatetraenoyl-phosphatidylethanolamine. We have in this study investigated the formation of various lipid hydroperoxide by either purified 15-LO-1 or in the Hodgkin lymphoma cell line L1236, which contain abundant amount of 15-LO-1. Both purified 15-LO-1 and L1236 cells produced lipid hydroperoxides more efficiently when anandamide (AEA) or 2-arachidonoyl-glycerol ester was used as substrate than with ARA. Furthermore, L1236 cells converted AEA to a novel class of cysteinyl-containing metabolites. Based on RP-HPLC, mass spectrometry and comparison to synthetic products, these metabolites were identified as the ethanolamide of the eoxin (EX) C(4) and EXD(4). By using the epoxide EXA(4)-ethanol amide, it was also found that platelets have the capacity to produce the ethanolamide of EXC(4) and EXD(4). We suggest that the ethanolamides of the eoxins should be referred to as eoxamides, in analogy to the ethanolamides of prostaglandins which are named prostamides. The metabolism of AEA into eoxamides might engender molecules with novel biological effects. Alternatively, it might represent a new mechanism for the termination of AEA signalling.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glutationa Transferase/metabolismo , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Linhagem Celular Tumoral , Doença de Hodgkin/metabolismo , Humanos , Leucotrieno D4/análogos & derivados , Leucotrieno D4/biossíntese , Leucotrienos/biossíntese , Lipoxigenase/metabolismo
8.
Lipids ; 46(1): 69-79, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21046276

RESUMO

Hepoxilins are epoxy alcohols synthesized through the 12-lipoxygenase (12-LO) pathway in animal cells. The epidermis is the principal source of hepoxilins in humans. Here we report on the formation of novel hepoxilin regioisomers formed by the 15-LO pathway in human cells. The Hodgkin lymphoma cell line L1236 possesses high 15-lipoxygenase-1 (15-LO-1) activity and incubation of L1236 cells with arachidonic acid led to the formation of 11(S)-hydroxy-14(S),15(S)-epoxy 5(Z),8(Z),12(E) eicosatrienoic acid (14,15-HxA(3) 11(S)) and 13(R)-hydroxy-14(S),15(S)-epoxy 5(Z),8(Z),11(Z) eicosatrienoic acid (14,15-HxB(3) 13(R)). In addition, two hitherto unidentified products were detected and these products were collected and analyzed by positive ion electrospray tandem mass spectrometry. These metabolites were identified as 11(S),15(S)-dihydroxy-14(R)-glutathionyl-5(Z),8(Z),12(E)-eicosatrienoic acid (14,15-HxA(3)-C) and 11(S),15(S)-dihydroxy-14(R)-cysteinyl-glycyl-5(Z),8(Z),12(E)-eicosatrienoic acid (14,15-HxA(3)-D). Incubation of L1236 cells with synthetic 14,15-HxA(3) 11(S) also led to the formation of 14,15-HxA(3)-C and 14,15-HxA(3)-D. Several soluble glutathione transferases, in particular GST M1-1 and GST P1-1, were found to catalyze the conversion of 14,15-HxA(3) to 14,15-HxA(3)-C. L1236 cells produced approximately twice as much eoxins as cysteinyl-containing hepoxilins upon stimulation with arachidonic acid. Human eosinophils, nasal polyps and dendritic cells selectively formed 14,15-HxA(3) 11(S) and 14,15-HxB(3) 13(R) stereoisomers, but not cysteinyl-containing hepoxilins, after stimulation with arachidonic acid. Furthermore, purified recombinant 15-LO-1 alone catalyzed the conversion of arachidonic acid to 14,15-HxA(3) 11(S) and 14,15-HxB(3) 13(R), showing that human 15-LO-1 possesses intrinsic 14,15-hepoxilin synthase activity.


Assuntos
Eosinófilos/enzimologia , Doença de Hodgkin/enzimologia , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dipeptídeos/metabolismo , Eosinófilos/citologia , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Estereoisomerismo
9.
Am J Physiol Lung Cell Mol Physiol ; 297(1): L196-203, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429775

RESUMO

15-Lipoxygenase-1 (15-LOX-1) has been proposed to be involved in various physiological and pathophysiological activities such as inflammation, atherosclerosis, cell maturation, and tumorigenesis. Asthma and chronic obstructive pulmonary disease are associated with increased expression of 15-LOX-1 in bronchial epithelial cells, but the potential functions of 15-LOX-1 in airway epithelial cells have not been well clarified. To study the function of 15-LOX-1 in bronchial epithelial cells, we ectopically expressed 15-LOX-1 in the human lung epithelial cell line A549. We found that overexpression of 15-LOX-1 in A549 cells leads to increased release of the chemokines MIP-1alpha, RANTES, and IP-10, and thereby to increased recruitment of immature dendritic cells, mast cells, and activated T cells. These results suggest that an increased expression and activity of 15-LOX-1 in lung epithelial cells is a proinflammatory event in the pathogenesis of asthma and other inflammatory lung disorders.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/enzimologia , Pulmão/citologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiocinas/genética , Células Dendríticas/citologia , Células Epiteliais/citologia , Vetores Genéticos/genética , Humanos , Ativação Linfocitária , Mastócitos/citologia , NF-kappa B/metabolismo , Linfócitos T/citologia , Transcrição Gênica , Transfecção , Regulação para Cima
10.
FEBS J ; 275(16): 4222-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18647347

RESUMO

Classical Hodgkin lymphoma has unique clinical and pathological features and tumour tissue is characterized by a minority of malignant Hodgkin Reed-Sternberg cells surrounded by inflammatory cells. In the present study, we report that the Hodgkin lymphoma-derived cell line L1236 has high expression of 15-lipoxygenase-1 and that these cells readily convert arachidonic acid to eoxin C(4), eoxin D(4) and eoxin E(4). These mediators were only recently discovered in human eosinophils and mast cells and found to be potent proinflammatory mediators. Western blot and immunocytochemistry analyses of L1236 cells demonstrated that 15-lipoxygenase-1 was present mainly in the cytosol and that the enzyme translocated to the membrane upon calcium challenge. By immunohistochemistry of Hodgkin lymphoma tumour tissue, 15-lipoxygenase-1 was found to be expressed in primary Hodgkin Reed-Sternberg cells in 17 of 20 (85%) investigated biopsies. The enzyme 15-lipoxygenase-1, however, was not expressed in any of 10 biopsies representing nine different subtypes of non-Hodgkin lymphoma. In essence, the expression of 15-lipoxygenase-1 and the putative formation of eoxins by Hodgkin Reed-Sternberg cells in vivo are likely to contribute to the inflammatory features of Hodgkin lymphoma. These findings may have important diagnostic and therapeutic implications in Hodgkin lymphoma. Furthermore, the discovery of the high 15-lipoxygenase-1 activity in L1236 cells demonstrates that this cell line comprises a useful model system to study the chemical and biological roles of 15-lipoxygenase-1.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Doença de Hodgkin/enzimologia , Leucotrieno D4/análogos & derivados , Leucotrieno E4/análogos & derivados , Leucotrienos/biossíntese , Células de Reed-Sternberg/enzimologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Araquidonato 15-Lipoxigenase/análise , Biópsia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/patologia , Humanos , Leucotrieno D4/biossíntese , Leucotrieno D4/química , Leucotrieno E4/biossíntese , Leucotrieno E4/química , Leucotrienos/química , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/enzimologia , Linfoma não Hodgkin/patologia , Masculino , Pessoa de Meia-Idade
11.
Proc Natl Acad Sci U S A ; 105(2): 680-5, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184802

RESUMO

Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC4. This metabolite could be metabolized to 14,15-LTD4 and 14,15-LTE4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C4, -D4, and -E4 instead of 14,15-LTC4, -D4, and -E4, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC4. Incubation of eosinophils with arachidonic acid favored the production of EXC4, whereas challenge with calcium ionophore led to exclusive formation of LTC4. Eosinophils produced EXC4 after challenge with the proinflammatory agents LTC4, prostaglandin D2, and IL-5, demonstrating that EXC4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC4 and LTD4. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Eosinófilos/enzimologia , Regulação Enzimológica da Expressão Gênica , Leucotrieno C4/fisiologia , Leucotrieno E4/análogos & derivados , Mastócitos/enzimologia , Cálcio/metabolismo , Cromatografia Líquida/métodos , Humanos , Interleucina-6/metabolismo , Leucotrieno C4/metabolismo , Leucotrieno E4/metabolismo , Leucotrieno E4/farmacologia , Leucotrieno E4/fisiologia , Leucotrienos/química , Leucotrienos/farmacologia , Espectrometria de Massas/métodos , Mastócitos/metabolismo , Modelos Biológicos , Modelos Químicos , Prostaglandina D2/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
12.
Plant Physiol ; 145(4): 1658-69, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17951463

RESUMO

The jasmonate family of phytohormones, as represented by 12-oxo-phytodienoic acid (OPDA), dinor-phytodienoic acid (dn-OPDA), and jasmonic acid in Arabidopsis (Arabidopsis thaliana), has been implicated in a vast array of different developmental processes and stress responses. Recent reports indicate that OPDA and dn-OPDA occur not only as free acids in Arabidopsis, but also as esters with complex lipids, so-called arabidopsides. Recently, we showed that recognition of the two bacterial effector proteins AvrRpm1 and AvrRpt2 induced high levels of a molecule consisting of two OPDAs and one dn-OPDA esterified to a monogalactosyl diacylglycerol moiety, named arabidopside E. In this study, we demonstrate that the synthesis of arabidopsides is mainly independent of the prokaryotic lipid biosynthesis pathway in the chloroplast, and, in addition to what previously has been reported, arabidopside E as well as an all-OPDA analog, arabidopside G, described here accumulated during the hypersensitive response and in response to wounding. We also show that different signaling pathways lead to the formation of arabidopsides during the hypersensitive response and the wounding response, respectively. However, the formation of arabidopsides during both responses is dependent on an intact jasmonate signaling pathway. Additionally, we report inhibition of growth of the fungal necrotrophic pathogen Botrytis cinerea and in planta release of free jasmonates in a time frame that overlaps with the observed reduction of arabidopside levels. Thus, arabidopsides may have a dual function: as antipathogenic substances and as storage compounds that allow the slow release of free jasmonates.


Assuntos
Arabidopsis/metabolismo , Botrytis/imunologia , Ciclopentanos/metabolismo , Galactolipídeos/biossíntese , Oxilipinas/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Galactolipídeos/metabolismo , Estrutura Molecular , Doenças das Plantas , Pseudomonas syringae/imunologia , Ácido Salicílico/metabolismo , Transdução de Sinais/imunologia
13.
Biochim Biophys Acta ; 1771(9): 1156-65, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17662651

RESUMO

Mast cells play a key role in the pathophysiology of asthma. These cells exert their effector functions by releasing a variety of proinflammatory and immunoregulatory compounds. Mast cells infiltrate the bronchial epithelium and smooth muscle to a higher degree in patients with asthma compared to control subjects. 15-Lipoxygenase type-1 (15-LO-1) is a prooxidant enzyme which is expressed in asthmatic lungs leading to formation of pro- and anti-inflammatory mediators. Here we report that interleukin-4 (IL-4) induced the expression of 15-LO-1 in human cord blood derived mast cells (CBMC) as demonstrated by RT-PCR, western blot and immunocytochemistry. The major metabolite of arachidonic acid formed via the 15-LO pathway in IL-4 treated CBMC was identified as 15-ketoeicosatetraenoic acid (15-KETE, also named 15-oxo-ETE) with smaller amounts of 15-hydroxyeicosatetraenoic acid (15-HETE) as identified by HPLC and mass spectrometry (MS/MS). Furthermore, immunohistochemical stainings demonstrated the expression of 15-LO-1 in mast cells in lung and skin in vivo. Osmotic activation of CBMC with mannitol resulted in activation of the 15-LO-1 pathway. In conclusion, the expression of 15-LO-1 and release of 15-LO-1 derived products by mast cells may contribute to the role of these cells in asthma and other inflammatory diseases.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Interleucina-4/imunologia , Isoenzimas/metabolismo , Mastócitos/enzimologia , Araquidonato 15-Lipoxigenase/genética , Ácidos Araquidônicos/metabolismo , Asma/enzimologia , Asma/imunologia , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Isoenzimas/genética , Leucotrienos/metabolismo , Peróxidos Lipídicos/metabolismo , Pulmão/citologia , Pulmão/imunologia , Manitol/metabolismo , Mastócitos/citologia , Mastócitos/imunologia , Pele/citologia , Pele/imunologia , Triptases/metabolismo
14.
J Biol Chem ; 281(42): 31528-37, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16923817

RESUMO

Oxidation products of unsaturated fatty acids, collectively known as oxylipins, function as signaling molecules in plants during development, wounding, and insect and pathogen attack. Certain oxylipins are also known to have direct cytotoxic effects on pathogens. We used inducible expression of bacterial avirulence proteins in planta to study the involvement of oxylipins in race-specific defense against bacterial pathogens. We demonstrate that recognition of the Pseudomonas syringae avirulence protein AvrRpm1 induces 9- and 13-lipoxygenase-dependent oxylipin synthesis in Arabidopsis thaliana. The major oxylipins accumulated were jasmonic acid, 12-oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. The majority of the newly formed oxylipins (>90%) was found to be esterified to glycerolipids, whereby 12-oxo-phytodienoic acid and dinor-oxo-phytodienoic acid were found to be esterified to a novel galactolipid. The structure of the substance was determined as a monogalactosyldiacylglycerol containing two 12-oxo-phytodienoic acids and one dinor-oxo-phytodienoic acid acyl chain and was given the trivial name arabidopside E. This substance accumulated to surprisingly high levels, 7-8% of total lipid content, and was shown to inhibit growth of a bacterial pathogen in vitro. Arabidopside E was formed also after recognition of the avirulence protein AvrRpt2, suggesting that this could be a conserved feature of defense reactions against bacterial pathogens. In conclusion, the data presented suggest a role of enzymatically formed oxylipins, especially the octadecanoids and arabidopside E in race-specific resistance against bacterial pathogens.


Assuntos
Arabidopsis/metabolismo , Galactolipídeos/química , Regulação da Expressão Gênica de Plantas , Arabidopsis/microbiologia , Ácidos Graxos/química , Galactolipídeos/metabolismo , Regulação Enzimológica da Expressão Gênica , Lipídeos/química , Modelos Químicos , Proteínas de Plantas , Plantas Geneticamente Modificadas , Pseudomonas syringae/metabolismo , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...