Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38972004

RESUMO

The development of new anticounterfeiting solutions is a constant challenge and involves several research fields. Much interest is currently devoted to systems that are impossible to clone, based on the physical unclonable function (PUF) paradigm. In this work, a new strategy based on electrospinning and electrospraying of dye-doped polymeric materials is presented for the manufacturing of flexible free-standing films that embed simultaneously different PUF keys. The proposed films can be used to fabricate novel anticounterfeiting labels having three encryption levels: (i) a map of fluorescent polymer droplets, with random positions on a dense yarn of polymer nanofibers, (ii) a characteristic fluorescence spectrum for each label, and (iii) the unique speckle patterns that every label produces when illuminated with coherent laser light shaped in different wavefronts. The intrinsic uniqueness introduced by the manufacturing process encodes enough complexity into the optical anticounterfeiting tag to generate thousands of cryptographic keys. The simple and cheap fabrication process as well as multilevel authentication makes such colored polymeric unclonable tags a practical solution in the secure protection of goods in our daily life.

2.
Nanomaterials (Basel) ; 12(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457987

RESUMO

Multilevel anticounterfeiting Physical Unclonable Function (PUF) tags based on thin film of silver (Ag), Zinc Oxide (ZnO) and PolyVinylPyrrolidone (PVP), are experimentally demonstrated and validated. We exploit the low adhesion of silver to glass and consequent degradation during ZnO deposition to induce morphological randomness. Several photographs of the tag surfaces have been collected with different illumination conditions and using two smartphones of diverse brand. The photos were analyzed using an image recognition algorithm revealing low common minutiae for different tags. Moreover, the optical response reveals peculiar spectra due to labels of plasmonic nature. The proposed systems can be easily fabricated on large areas and represent a cost-effective solution for practical protection of objects.

3.
Membranes (Basel) ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967339

RESUMO

Membrane modification is becoming ever more relevant for mitigating fouling phenomena within wastewater treatment applications. Past research included a novel low-fouling coating using polymerizable bicontinuous microemulsion (PBM) induced by UV-LED polymerization. This additional cover layer deteriorated the filtration capacity significantly, potentially due to the observed high pore intrusion of the liquid PBM prior to the casting process. Therefore, this work addressed an innovative experimental protocol for controlling the viscosity of polymerizable bicontinuous microemulsions (PBM) before casting on commercial ultrafiltration (UF) membranes. Prior to the coating procedure, the PBM viscosity modulation was carried out by controlled radical polymerization (CRP). The regulation was conducted by introducing the radical inhibitor 2,2,6,6-tetramethylpiperidine 1-oxyl after a certain time (CRP time). The ensuing controlled radical polymerized PBM (CRP-PBM) showed a higher viscosity than the original unpolymerized PBM, as confirmed by rheological measurements. Nevertheless, the resulting CRP-PBM-cast membranes had a lower permeability in water filtration experiments despite a higher viscosity and potentially lower pore intrusion. This result is due to different polymeric structures of the differently polymerized PBM, as confirmed by solid-state nuclear magnetic resonance (NMR) investigations. The findings can be useful for future developments in the membrane science field for production of specific membrane-coating layers for diverse applications.

4.
Beilstein J Nanotechnol ; 9: 379-383, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515951

RESUMO

In the last decade, much interest has grown around the possibility to use liquid-crystal droplets as optical microcavities and lasers. In particular, 3D laser emission from dye-doped cholesteric liquid crystals confined inside microdroplets paves the way for many applications in the field of sensors or tunable photonics. Several techniques can be used to obtain small microresonators as, for example, dispersing a liquid crystal inside an immiscible isotropic fluid to create an emulsion. Recently, the possibility to obtain a thin free-standing film starting from an emulsion having a mixture of water and polyvinyl alcohol as isotropic matrix has been reported. After the water evaporation, a polymeric film in which the microdroplets are encapsulated has been obtained. Bragg-type laser emission has been recorded from the emulsion as well as from the thin film. Here, we report on the possibility to tune the laser emission as a function of temperature. Using a chiral dopant with temperature dependent solubility, the emitted laser wavelength can be tuned in a range of 40 nm by a temperature variation of 18 °C. The proposed device can have applications in the field of sensors and for the development of anti-counterfeiting labels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...