Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(10): 14536-14547, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985175

RESUMO

We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e. g. in quantum cascade lasers emission, requires a high-performance detection system. Through the intensity noise power spectral density analysis of the differential signal coming from the incident radiation, we show that our setup is shot-noise limited. We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.

2.
Open Res Eur ; 1: 102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645131

RESUMO

Background: Optical microtraps at the focus of high numerical aperture (high-NA) imaging systems enable efficient collection, trapping, detection and manipulation of individual neutral atoms for quantum technology and studies of optical physics associated with super- and sub-radiant states.  The recently developed "Maltese cross" geometry (MCG) atom trap uses four in-vacuum lenses to achieve four-directional high-NA optical coupling to single trapped atoms and small atomic arrays. This article presents the first extensive characterisation of atomic behaviour in a MCG atom trap. Methods: We employ a MCG system optimised for high coupling efficiency and characterise the resulting properties of the trap and trapped atoms.  Using current best practices, we measure occupancy, loading rate, lifetime, temperature, fluorescence anti-bunching and trap frequencies. We also use the four-directional access to implement a new method to map the spatial distribution of collection efficiency from high-NA optics:  we use the two on-trap-axis lenses to produce a 1D optical lattice, the sites of which are stochastically filled and emptied by the trap loading process. The two off-trap-axis lenses are used for imaging and single-mode collection.  Correlations of single-mode and imaging fluorescence signals are then used to map the single-mode collection efficiency. Results: We observe trap characteristics comparable to what has been reported for single-atom traps with one- or two-lens optical systems. The collection efficiency distribution in the axial and transverse directions is directly observed to be in agreement with expected collection efficiency distribution from Gaussian beam optics. Conclusions: The multi-directional high-NA access provided by the Maltese cross geometry enables complex manipulations and measurements not possible in geometries  with fewer  directions of  access,  and can  be  achieved  while  preserving other trap characteristics such as lifetime, temperature, and trap size.

3.
Opt Express ; 27(26): 38463-38478, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878613

RESUMO

We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters designed such that 97.7% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneable-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, demonstrate CE-SPDC driven atomic spectroscopy, and measure a contribution from unwanted modes of 7.7%. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.

4.
Opt Express ; 27(21): 31042-31052, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684344

RESUMO

We report on the simultaneous observation from four directions of the fluorescence of single 87Rb atoms trapped at the common focus of four high numerical aperture (NA=0.5) aspheric lenses. We use an interferometrically-guided pick-and-place technique to precisely and stably position the lenses along the four cardinal directions with their foci at a single central point. The geometry gives right angle access to a single quantum emitter, and will enable new trapping, excitation, and collection methods. The fluorescence signals indicate both sub-Poissonian atom number statistics and photon anti-bunching, showing suitability for cold atom quantum optics.

5.
Opt Express ; 24(1): 125-33, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832244

RESUMO

We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...