Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Allergy ; 4: 1187945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377691

RESUMO

Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.

2.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511516

RESUMO

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Assuntos
Asma , Eosinofilia , Animais , Asma/metabolismo , Pulmão/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Pyroglyphidae , Eosinofilia/patologia , Modelos Animais de Doenças
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162999

RESUMO

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/enzimologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Virais/metabolismo , Células A549 , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/química , Infecções por Orthomyxoviridae/metabolismo , Cultura Primária de Células , Dobramento de Proteína , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/virologia , Proteínas Virais/química
4.
Thorax ; 77(7): 669-678, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34400514

RESUMO

BACKGROUND: The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated. OBJECTIVES: To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis. METHODS: Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice. RESULTS: PDIA3 and club cell secretory protein (SCGB1A1) signatures are upregulated in IPF compared with control patients. PDIA3 or SCGB1A1 increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of Pdia3, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice. CONCLUSIONS: Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Bleomicina , Células Epiteliais/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , Osteopontina/genética , Osteopontina/metabolismo , Isomerases de Dissulfetos de Proteínas/genética
5.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681784

RESUMO

Mitochondria regulate a myriad of cellular functions. Dysregulation of mitochondrial control within airway epithelial cells has been implicated in the pro-inflammatory response to allergens in asthma patients. Because of their multifaceted nature, mitochondrial structure must be tightly regulated through fission and fusion. Dynamin Related Protein 1 (DRP1) is a key driver of mitochondrial fission. During allergic asthma, airway epithelial mitochondria appear smaller and structurally altered. The role of DRP1-mediated mitochondrial fission, however, has not been fully elucidated in epithelial response to allergens. We used a Human Bronchial Epithelial Cell line (HBECs), primary Mouse Tracheal Epithelial Cells (MTECs), and conditional DRP1 ablation in lung epithelial cells to investigate the impact of mitochondrial fission on the pro-inflammatory response to house dust mite (HDM) in vitro and in vivo. Our data suggest that, following HDM challenge, mitochondrial fission is rapidly upregulated in airway epithelial cells and precedes production of pro-inflammatory cytokines and chemokines. Further, deletion of Drp1 in lung epithelial cells leads to decreased fission and enhanced pro-inflammatory signaling in response to HDM in vitro, as well as enhanced airway hyper-responsiveness (AHR), inflammation, differential mucin transcription, and epithelial cell death in vivo. Mitochondrial fission, therefore, regulates the lung epithelial pro-inflammatory response to HDM.


Assuntos
Alérgenos/farmacologia , Dinaminas/fisiologia , Dinâmica Mitocondrial/genética , Hipersensibilidade Respiratória/genética , Mucosa Respiratória/efeitos dos fármacos , Animais , Brônquios/efeitos dos fármacos , Brônquios/fisiologia , Células Cultivadas , Dinaminas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
6.
Histochem Cell Biol ; 155(2): 291-300, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598824

RESUMO

It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.


Assuntos
Retículo Endoplasmático/ultraestrutura , Células Epiteliais/ultraestrutura , Imageamento Tridimensional , Pneumopatias/metabolismo , Pulmão/ultraestrutura , Mitocôndrias/ultraestrutura , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Células Epiteliais/química , Células Epiteliais/metabolismo , Humanos , Pulmão/metabolismo , Pneumopatias/patologia , Microscopia Confocal , Microscopia Eletrônica , Mitocôndrias/química , Mitocôndrias/metabolismo
7.
JCI Insight ; 4(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045581

RESUMO

Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl ß-muricholic acid (AßM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AßM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Ácidos e Sais Biliares/efeitos adversos , Quimiocinas , Citocinas/metabolismo , Feminino , Humanos , Hipersensibilidade , Pulmão/imunologia , Pulmão/metabolismo , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Deficiências na Proteostase , Pyroglyphidae/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Hipersensibilidade Respiratória/tratamento farmacológico , Ácido Tauroquenodesoxicólico/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
Redox Biol ; 22: 101129, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735910

RESUMO

Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.


Assuntos
Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Mucosa Respiratória/enzimologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Deleção de Genes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/diagnóstico , Isomerases de Dissulfetos de Proteínas/metabolismo , Testes de Função Respiratória , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Carga Viral
9.
Dev Dyn ; 246(7): 539-549, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28440030

RESUMO

BACKGROUND: Semaphorin (Sema)/Plexin (Plxn) signaling is important for many aspects of neuronal development, however, the transcriptional regulation imposed by this signaling pathway is unknown. Previously, we identified an essential role for Sema6A/PlxnA2 signaling in regulating proliferation and cohesion of retinal precursor cells (RPCs) during early eye development. This study used RNA isolated from control, Sema6A-deficient and PlxnA2-deficient zebrafish embryos in a microarray analysis to identify genes that were differentially expressed when this signaling pathway was disrupted. RESULTS: We uncovered a set of 58 transcripts, and all but 1 were up-regulated in both sema6A and plxnA2 morphants. We validated gene expression changes in subset of candidates that are suggested to be involved in proliferation, migration or neuronal positioning. We further functionally evaluated one gene, rasl11b, as contributing to disrupted proliferation in sema6A and plxna2 morphants. Our results suggest rasl11b negatively regulates proliferation of RPCs in the developing zebrafish eye. CONCLUSIONS: Microarray analysis has generated a resource of target genes downstream of Sema6A/PlxnA2 signaling, which can be further investigated to elucidate the downstream effects of this well-studied neuronal and vascular guidance signaling pathway. Developmental Dynamics 246:539-549, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular , Proliferação de Células , Olho/embriologia , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Retina/citologia , Células-Tronco , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...