Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(27): e2305860, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702931

RESUMO

Neurohybrid systems have gained large attention for their potential as in vitro and in vivo platform to interrogate and modulate the activity of cells and tissue within nervous system. In this scenario organic neuromorphic devices have been engineered as bioelectronic platforms to resemble characteristic neuronal functions. However, aiming to a functional communication with neuronal cells, material synthesis, and surface engineering can yet be exploited for optimizing bio-recognition processes at the neuromorphic-neuronal hybrid interface. In this work, artificial neuronal-inspired lipid bilayers have been assembled on an electrochemical neuromorphic organic device (ENODe) to resemble post-synaptic structural and functional features of living synapses. Here, synaptic conditioning has been achieved by introducing two neurotransmitter-mediated biochemical signals, to induce an irreversible change in the device conductance thus achieving Pavlovian associative learning. This new class of in vitro devices can be further exploited for assembling hybrid neuronal networks and potentially for in vivo integration within living neuronal tissues.


Assuntos
Bicamadas Lipídicas , Neurônios , Neurônios/fisiologia , Neurônios/metabolismo , Bicamadas Lipídicas/química , Sinapses/fisiologia
2.
Mater Horiz ; 11(12): 2865-2874, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38698769

RESUMO

Organic neuromorphic platforms have recently received growing interest for the implementation and integration of artificial and hybrid neuronal networks. Here, achieving closed-loop and learning/training processes as in the human brain is still a major challenge especially exploiting time-dependent biosignalling such as neurotransmitter release. Here, we present an integrated organic platform capable of cooperating with standard silicon technologies, to achieve brain-inspired computing via adaptive synaptic potentiation and depression, in a closed-loop fashion. The microfabricated platform could be interfaced and control a robotic hand which ultimately was able to learn the grasping of differently sized objects, autonomously.


Assuntos
Encéfalo , Redes Neurais de Computação , Neurotransmissores , Humanos , Encéfalo/fisiologia , Robótica/métodos , Aprendizagem/fisiologia
4.
Nat Commun ; 14(1): 6760, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919279

RESUMO

Exploiting the light-matter interplay to realize advanced light responsive multimodal platforms is an emerging strategy to engineer bioinspired systems such as optoelectronic synaptic devices. However, existing neuroinspired optoelectronic devices rely on complex processing of hybrid materials which often do not exhibit the required features for biological interfacing such as biocompatibility and low Young's modulus. Recently, organic photoelectrochemical transistors (OPECTs) have paved the way towards multimodal devices that can better couple to biological systems benefiting from the characteristics of conjugated polymers. Neurohybrid OPECTs can be designed to optimally interface neuronal systems while resembling typical plasticity-driven processes to create more sophisticated integrated architectures between neuron and neuromorphic ends. Here, an innovative photo-switchable PEDOT:PSS was synthesized and successfully integrated into an OPECT. The OPECT device uses an azobenzene-based organic neuro-hybrid building block to mimic the retina's structure exhibiting the capability to emulate visual pathways. Moreover, dually operating the device with opto- and electrical functions, a light-dependent conditioning and extinction processes were achieved faithful mimicking synaptic neural functions such as short- and long-term plasticity.

5.
Chem Commun (Camb) ; 58(70): 9790-9793, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35971788

RESUMO

Conductive 3D platforms have gained increasing attention in bioelectronics thanks to the improvement in the cell-chip coupling. PEDOT:PSS is nowadays widely employed in bioelectronic applications thanks to its electrical and mechanical properties. In this work, an innovative fabrication method for the realization of PEDOT:PSS-based conductive micropillars and 3D cage-like structures is presented, combining two-photon lithography and electrodeposition techniques.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Polimerização , Polímeros/química
6.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409403

RESUMO

Odorant-binding proteins (OBPs) are a group of small and soluble proteins present in both vertebrates and insects. They have a high level of structural stability and bind to a large spectrum of odorant molecules. In the environmental field, benzene is the most dangerous compound among the class of pollutants named BTEX (benzene, toluene, ethylbenzene, and xylene). It has several effects on human health and, consequently, it appears to be important to monitor its presence in the environment. Commonly, its detection requires the use of very sophisticated and time-consuming analytical techniques (GC-MS, etc.) as well as the presence of specialized personnel. Here, we present the application of an odorant-binding protein (pOBP) isolated from pigs as a molecular recognition element (MRE) for a low-energy impedenziometric biosensor for outdoor and real-time benzene detection. The obtained results show that the biosensor can detect the presence of 64 pM (5 µg/m3) benzene, the limit value of exposure for human health set by the European Directive 2008/50/EC.


Assuntos
Benzeno , Receptores Odorantes , Animais , Derivados de Benzeno , Suínos , Tolueno , Xilenos
7.
Adv Mater ; 34(15): e2110194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174916

RESUMO

Synaptic plasticity is a fundamental process for neuronal communication and is involved in neurodegeneration. This process has been recently exploited to inspire the design of next-generation bioelectronic platforms. Neuromorphic devices have emerged as ideal candidates in mimicking brain functionalities, thanks to their ionic-to-electronic signal transduction, biocompatibility, and their ability to display short- and long-term memory as biological synapses. However, these devices still fail in bridging the gap between electronics and biological systems due to the lack of biomimetic features. Here, a biomembrane-based organic electrochemical transistor (OECT) is implemented and the supported-lipid-bilayer-mediated short-term depression of the device is investigated. After morphological and electrical characterization of the lipid bilayer, its ionic barrier behavior is exploited to enhance the neuromorphic operation of the OECT. Such biomimetic neuromorphic devices pave the way toward the implementation of synapses-resembling in vitro platforms to investigate and characterize neurodegenerative processes involving synaptic plasticity loss.


Assuntos
Biomimética , Bicamadas Lipídicas , Plasticidade Neuronal , Sinapses/fisiologia , Transistores Eletrônicos
8.
Chem Rev ; 122(4): 4552-4580, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34582168

RESUMO

The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.


Assuntos
Biomimética , Polímeros , Membrana Celular , Eletrônica , Matriz Extracelular/química , Polímeros/química
9.
Sensors (Basel) ; 19(2)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669504

RESUMO

In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art.


Assuntos
Equipamentos para Diagnóstico , Doenças dos Suínos/diagnóstico , Suínos/virologia , Viroses/diagnóstico , Animais , Técnicas Biossensoriais , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...