Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(1): e86425, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466086

RESUMO

Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.


Assuntos
Cílios/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Isoformas de Proteínas , Transporte Proteico , Proteínas R-SNARE/genética , Ratos
2.
Mol Genet Metab ; 111(2): 184-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24215843

RESUMO

Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , alfa-Galactosidase/metabolismo , Animais , Cães , Doença de Fabry/enzimologia , Doença de Fabry/patologia , Expressão Gênica , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Rim/enzimologia , Rim/patologia , Lisossomos/enzimologia , Lisossomos/patologia , Células Madin Darby de Rim Canino , Microdomínios da Membrana/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Triexosilceramidas/biossíntese , alfa-Galactosidase/antagonistas & inibidores , alfa-Galactosidase/genética
3.
Mol Biol Cell ; 24(12): 1996-2007, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23637462

RESUMO

The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75-green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.


Assuntos
Multimerização Proteica , Receptor de Fator de Crescimento Neural/química , Receptor de Fator de Crescimento Neural/metabolismo , Rede trans-Golgi/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Cães , Galectinas/genética , Galectinas/metabolismo , Glicosilação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Modelos Biológicos , Mutação , Transporte Proteico , Interferência de RNA , Receptor de Fator de Crescimento Neural/genética
4.
Traffic ; 13(3): 433-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22118573

RESUMO

Many newly synthesized membrane proteins traverse endocytic intermediates en route to the surface in polarized epithelial cells; however, the biosynthetic itinerary of secreted proteins has not been elucidated. We monitored the trafficking route of two secreted proteins with different apical sorting signals: the N-glycan-dependent cargo glycosylated growth hormone (gGH) and Ensol, a soluble version of endolyn whose apical sorting is independent of N-glycans. Both proteins were observed to colocalize in part with apical recycling endosome (ARE) markers. Cargo that lacks an apical targeting signal and is secreted in a nonpolarized manner did not localize to the ARE. Expression of a dominant-negative mutant of myosin Vb, which disrupts ARE export of glycan-dependent membrane proteins, selectively inhibited apical release of gGH but not Ensol. Fluorescence recovery after photobleaching (FRAP) measurements revealed that gGH in the ARE was less mobile than Ensol, consistent with tethering to a sorting receptor. However, knockdown of galectin-3 or galectin-4, lectins implicated in apical sorting, had no effect on the rate or polarity of gGH secretion. Together, our results suggest that apically secreted cargoes selectively access the ARE and are exported via differentially regulated pathways.


Assuntos
Endossomos/metabolismo , Células Epiteliais/metabolismo , Animais , Linhagem Celular , Cães , Endolina/metabolismo , Endossomos/química , Hormônio do Crescimento/análogos & derivados , Hormônio do Crescimento/metabolismo , Transporte Proteico
5.
Am J Physiol Renal Physiol ; 299(5): F1178-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702601

RESUMO

Here, we compared the effects of nucleofection and lipid-based approaches to introduce siRNA duplexes on the subsequent development of membrane polarity in kidney cells. Nucleofection of Madin-Darby canine kidney (MDCK) cells, even with control siRNA duplexes, disrupted the initial surface polarity as well as the steady-state distribution of membrane proteins. Transfection using lipofectamine yielded slightly less efficient knockdown but did not disrupt membrane polarity. Polarized secretion was unaffected by nucleofection, suggesting a selective defect in the development of membrane polarity. Cilia frequency and length were not altered by nucleofection. However, the basolateral appearance of a fluorescent lipid tracer added to the apical surface of nucleofected cells was dramatically enhanced relative to untransfected controls or lipofectamine-treated cells. In contrast, [(3)H]inulin diffusion and transepithelial electrical resistance were not altered in nucleofected cells compared with untransfected ones. We conclude that nucleofection selectively hinders development of the tight junction fence function in MDCK cells.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/fisiologia , Rim/fisiologia , Junções Íntimas/fisiologia , Adenoviridae/genética , Animais , Biotinilação , Linhagem Celular , Membrana Celular/fisiologia , Cílios/ultraestrutura , Cães , Corantes Fluorescentes , Técnicas de Transferência de Genes , Vetores Genéticos , Inulina , Rim/citologia , Lipídeos , Potenciais da Membrana/fisiologia , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , Transfecção
6.
Biol Chem ; 390(7): 551-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453277

RESUMO

MUC1 is a heavily glycosylated transmembrane protein localized at the apical surface of polarized epithelial cells. Here, we examined the biosynthetic route of newly synthesized MUC1 in polarized Madin-Darby canine kidney (MDCK) cells. Apically and basolaterally destined cargo are sorted at the trans-Golgi network into distinct vesicles, and proteins with lipid raft-dependent apical targeting signals and glycan-dependent apical targeting signals appear to specifically transit apical early endosomes (AEEs) and apical recycling endosomes (AREs), respectively. Using metabolic labeling we found that MUC1 is efficiently targeted to the apical surface of polarized MDCK cells with a t(1/2) of 45 min. Apical delivery was not altered by inactivation of AEEs by treatment with hydrogen peroxide and diaminobenzidine treatment after apical loading of endosomes with horseradish peroxidase-conjugated wheat germ agglutinin. However, expression of a GFP-tagged myosin Vb tail fragment (GFP-MyoVbT) that disrupts export from the ARE significantly reduced MUC1 apical expression. Moreover, MUC1 expressed for brief periods in MDCK cells co-localized with GFP-MyoVbT. We conclude that MUC1 traffics to the apical surface via AREs in polarized renal epithelial cells.


Assuntos
Polaridade Celular , Endossomos/metabolismo , Mucina-1/biossíntese , Mucina-1/metabolismo , Animais , Linhagem Celular , Cães , Transporte Proteico
7.
Am J Physiol Gastrointest Liver Physiol ; 295(3): G559-69, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18635599

RESUMO

Necrotizing enterocolitis (NEC) is associated with the release of interferon-gamma (IFN) by enterocytes and delayed intestinal restitution. Our laboratory has recently demonstrated that IFN inhibits enterocyte migration by impairing enterocyte gap junctions, intercellular channels that are composed of connexin43 (Cx43) monomers and that are required for enterocyte migration to occur. The mechanisms by which IFN inhibits gap junctions are incompletely understood. Lipid rafts are cholesterol-sphingolipid-rich microdomains of the plasma membrane that play a central role in the trafficking and signaling of various proteins. We now hypothesize that Cx43 is present on enterocyte lipid rafts and that IFN inhibits enterocyte migration by displacing Cx43 from lipid rafts in enterocytes. We now confirm our previous observations that intestinal restitution is impaired in NEC and demonstrate that Cx43 is present on lipid rafts in IEC-6 enterocytes. We show that lipid rafts are required for enterocyte migration, that IFN displaces Cx43 from lipid rafts, and that the phorbol ester phorbol 12-myristate 13-acetate (PMA) restores Cx43 to lipid rafts after treatment with IFN in a protein kinase C-dependent manner. IFN also reversibly decreased the phosphorylation of Cx43 on lipid rafts, which was restored by PMA. Strikingly, restoration of Cx43 to lipid rafts by PMA or by transfection of enterocytes with adenoviruses expressing wild-type Cx43 but not mutant Cx43 is associated with the restoration of enterocyte migration after IFN treatment. Taken together, these findings suggest an important role for lipid raft-Cx43 interactions in the regulation of enterocyte migration during exposure to IFN, such as NEC.


Assuntos
Movimento Celular , Conexina 43/metabolismo , Enterocolite Necrosante/metabolismo , Enterócitos/metabolismo , Junções Comunicantes/metabolismo , Íleo/metabolismo , Interferon gama/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Linhagem Celular , Conexina 43/genética , Modelos Animais de Doenças , Enterocolite Necrosante/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/enzimologia , Enterócitos/patologia , Junções Comunicantes/efeitos dos fármacos , Íleo/patologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Mutação , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Transfecção
8.
J Biol Chem ; 281(22): 15376-84, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16601114

RESUMO

The mechanisms by which polarized epithelial cells target distinct carriers enriched in newly synthesized proteins to the apical or basolateral membrane remain largely unknown. Here we investigated the effect of phosphatidylinositol metabolism and modulation of the actin cytoskeleton, two regulatory mechanisms that have individually been suggested to function in biosynthetic traffic, on polarized traffic in Madin-Darby canine kidney cells. Overexpression of phosphatidylinositol 5-kinase (PI5K) increased actin comet frequency in Madin-Darby canine kidney cells and concomitantly stimulated trans-Golgi network (TGN) to apical membrane delivery of the raft-associated protein influenza hemagglutinin (HA), but did not affect delivery of a non-raft-associated apical protein or a basolateral marker. Modulation of actin comet formation by pharmacologic means, by overexpression of the TGN-localized inositol polyphosphate 5-phosphatase Ocrl, or by blockade of Arp2/3 function had parallel effects on the rate of apical delivery of HA. Moreover, HA released from a TGN block was colocalized in transport carriers in association with PI5K and actin comets. Inhibition of Arp2/3 function in combination with microtubule depolymerization led to a virtual block in HA delivery, suggesting synergistic coordination of these cytoskeletal assemblies in membrane transport. Our results suggest a previously unidentified role for actin comet-mediated propulsion in the biosynthetic delivery of a subset of apical proteins.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Transporte Biológico Ativo , Linhagem Celular , Polaridade Celular/fisiologia , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microdomínios da Membrana/metabolismo , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rede trans-Golgi/metabolismo
9.
J Biol Chem ; 281(18): 12751-9, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16517607

RESUMO

Mucolipin-1 (ML1) is a member of the transient receptor potential ion channel superfamily that is thought to function in the biogenesis of lysosomes. Mutations in ML1 result in mucolipidosis type IV, a lysosomal storage disease characterized by the intracellular accumulation of enlarged vacuolar structures containing phospholipids, sphingolipids, and mucopolysaccharides. Little is known about how ML1 trafficking or activity is regulated. Here we have examined the processing and trafficking of ML1 in a variety of cell types. We find that a significant fraction of ML1 undergoes cell type-independent cleavage within the first extracellular loop of the protein during a late step in its biosynthetic delivery. To determine the trafficking route of ML1, we systematically examined the effect of ablating adaptor protein complexes on the localization of this protein. Whereas ML1 trafficking was not apparently affected in fibroblasts from mocha mice that lack functional adaptor protein complex (AP)-3, small interfering RNA-mediated knockdown revealed a requirement for AP-1 in Golgi export of ML1. Knockdown of functional AP-2 had no effect on ML1 localization. Interestingly, cleavage of ML1 was not compromised in AP-1-deficient cells, suggesting that proteolysis occurs in a prelysosomal compartment, possibly the trans-Golgi network. Our results suggest that posttranslational processing of ML1 is more complex than previously described and that this protein is delivered to lysosomes primarily via an AP-1-dependent route that does not involve passage via the cell surface.


Assuntos
Processamento de Proteína Pós-Traducional , Canais de Cátion TRPM/química , Fator de Transcrição AP-1/química , Fator de Transcrição AP-2/química , Animais , Córnea/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Coelhos , Canais de Cátion TRPM/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-2/metabolismo , Canais de Potencial de Receptor Transitório
10.
Traffic ; 7(2): 146-54, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420523

RESUMO

Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways.


Assuntos
Endolina/metabolismo , Polissacarídeos/metabolismo , Animais , Compartimento Celular , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Cães , Endocitose/fisiologia , Endolina/química , Endolina/genética , Glicosilação , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Ácidos Siálicos/química , Transdução de Sinais , Rede trans-Golgi/metabolismo
11.
J Biol Chem ; 279(31): 32071-8, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15166222

RESUMO

In many epithelial tissues in the body, the rate of Na(+) reabsorption is governed by the activity of the epithelial sodium channel (ENaC). The assembly, trafficking, and turnover of the three ENaC subunits (alpha, beta, and gamma) is complex and not well understood. Recent experiments suggest that ENaC must be proteolytically cleaved for maximal activity and may explain the discrepancies reported in prior biochemical approaches focused on quantitating the trafficking and half-life of full-length subunits. As an alternative approach to examining the dynamics of ENaC subunits, we have generated doxycycline-repressible replication-defective recombinant adenoviruses encoding individual epitope-tagged mouse ENaC subunits and expressed these in polarized MDCK I cells. Co-infection with these viruses encoding all three subunits generates robust amiloride-sensitive currents in polarized MDCK cells. Significant current was also observed in cells expressing alpha- and gamma-mENaC in the absence of beta-mENaC. These currents did not appear to result from association with endogenous canine beta-ENaC. Treatment of alpha beta gamma-expressing cells with cycloheximide (CHX) resulted in the rapid inhibition (within 3 h) of approximately 50-80% of the initial current; however, a sizable fraction of the initial current remained even after 6 h of CHX. By contrast, CHX addition to cells expressing only alpha- and gamma-mENaC resulted in rapid decay in current with no residual fraction. Our data suggest that ENaC channels of differing stoichiometries are differentially trafficked and degraded and provide support for the possibility that noncoordinate trafficking of ENaC subunits may function in vivo as a mechanism to modulate ENaC activity.


Assuntos
Epitélio/metabolismo , Rim/metabolismo , Canais de Sódio/química , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Cicloeximida/farmacologia , Cães , Doxiciclina/química , Doxiciclina/farmacologia , Eletrofisiologia , Canais Epiteliais de Sódio , Epitopos/química , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Testes de Precipitina , Inibidores da Síntese de Proteínas/farmacologia , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Sódio/farmacologia , Fatores de Tempo
12.
Mol Biol Cell ; 15(3): 1407-16, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14699065

RESUMO

The sialomucin endolyn is a transmembrane protein with a unique trafficking pattern in polarized Madin-Darby canine kidney cells. Despite the presence of a cytoplasmic tyrosine motif that, in isolation, is sufficient to mediate basolateral sorting of a reporter protein, endolyn predominantly traverses the apical surface en route to lysosomes. Apical delivery of endolyn is disrupted in tunicamycin-treated cells, implicating a role for N-glycosylation in apical sorting. Site-directed mutagenesis of endolyn's eight N-glycosylation sites was used to identify two N-glycans that seem to be the major determinants for efficient apical sorting of the protein. In addition, apical delivery of endolyn was disrupted when terminal processing of N-glycans was blocked using glycosidase inhibitors. Missorting of endolyn occurred independently of the presence or absence of the basolateral sorting signal, because apical delivery was also inhibited by tunicamycin when the cytoplasmic tyrosine motif was mutated. However, we found that apical secretion of a soluble mutant of endolyn was N-glycan independent, as was delivery of glycosylphosphatidylinositol-anchored endolyn. Thus, specific N-glycans are only essential for the apical sorting of transmembrane endolyn, suggesting fundamental differences in the mechanisms by which soluble, glycosylphosphatidylinositol-anchored, and transmembrane proteins are sorted.


Assuntos
Polaridade Celular/fisiologia , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Animais , Antígeno CD146 , Membrana Celular , Células Cultivadas , Citoplasma/metabolismo , Cães , Endolina , Glicosilação , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico
13.
Mol Biol Cell ; 14(5): 1801-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12802056

RESUMO

All identified basolateral sorting signals of integral membrane proteins are cytoplasmically disposed, suggesting that basolateral targeting is mediated exclusively by direct interaction with vesicle coat components. Here, we report that GPP130, a cis-Golgi protein that undergoes endosome-to-Golgi retrieval using the late endosome-bypass pathway in nonpolarized cells, cycles via the basolateral membrane in polarized MDCK cells. Significantly, the membrane-proximal lumenal domain of GPP130, which mediates GPP130 localization and trafficking in nonpolarized cells, was both necessary and sufficient for basolateral cycling in MDCK cells. The use of lumenal determinants for both basolateral cycling and endosome-to-Golgi retrieval suggests that a novel receptor-mediated mechanism operates at both the trans-Golgi network and distal sites to sort GPP130 along the late-endosome-bypass retrieval pathway in polarized cells.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Animais , Humanos , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular
14.
J Biol Chem ; 277(3): 2012-8, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11704666

RESUMO

Phosphatidylinositols (PI) play important roles in regulating numerous cellular processes including cytoskeletal organization and membrane trafficking. The control of PI metabolism by phosphatidylinositol kinases has been the subject of extensive investigation; however, little is known about how phosphatidylinositol kinases regulate traffic in polarized epithelial cells. Because phosphatidylinositol 4-kinase (PI4K)-mediated phosphatidylinositol 4-phosphate (PI(4)P) production has been suggested to regulate biosynthetic traffic in yeast and mammalian cells, we have examined the role of PI4Kbeta in protein delivery in polarized MDCK cells, at different levels of the biosynthetic pathway. Expression of wild type PI4Kbeta had no effect on the rate of transport of influenza hemagglutinin (HA) through the Golgi complex, but inhibited the rate of trans-Golgi network (TGN)-to-cell surface delivery of this protein. By contrast, expression of dominant-negative, kinase-dead PI4Kbeta (PI4Kbeta(D656A)) inhibited intra-Golgi transport but stimulated TGN-to-cell surface delivery of HA. Moreover, expression of PI4Kbeta(D656A) significantly increased the solubility in cold Triton X-100 of HA staged in the TGN, suggesting that altered association of HA with lipid rafts may be responsible for the enhanced transport rate. Both wild type and kinase-dead PI4Kbeta inhibited basolateral delivery of vesicular stomatitis virus G protein, suggesting an effector function for PI4Kbeta in the regulation of basolateral traffic. Thus, by contrast with the observed requirement for PI4Kbeta activity and PI(4)P for efficient transport in yeast, our data suggest that changes in PI(4)P levels can stimulate and inhibit Golgi to cell surface delivery in mammalian cells.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Rim/metabolismo , Animais , Membrana Basal/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Cães , Técnica Indireta de Fluorescência para Anticorpo , Complexo de Golgi/metabolismo , Rim/citologia , Rim/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...