Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 164: 107266, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494823

RESUMO

Since the onset of computer-aided diagnosis in medical imaging, voxel-based segmentation has emerged as the primary methodology for automatic analysis of left ventricle (LV) function and morphology in cardiac magnetic resonance images (CMRI). In standard clinical practice, simultaneous multi-slice 2D cine short-axis MR imaging is performed under multiple breath-holds resulting in highly anisotropic 3D images. Furthermore, sparse-view CMRI often lacks whole heart coverage caused by large slice thickness and often suffers from inter-slice misalignment induced by respiratory motion. Therefore, these volumes only provide limited information about the true 3D cardiac anatomy which may hamper highly accurate assessment of functional and anatomical abnormalities. To address this, we propose a method that learns a continuous implicit function representing 3D LV shapes by training an auto-decoder. For training, high-resolution segmentations from cardiac CT angiography are used. The ability of our approach to reconstruct and complete high-resolution shapes from manually or automatically obtained sparse-view cardiac shape information is evaluated by using paired high- and low-resolution CMRI LV segmentations. The results show that the reconstructed LV shapes have an unconstrained subvoxel resolution and appear smooth and plausible in through-plane direction. Furthermore, Bland-Altman analysis reveals that reconstructed high-resolution ventricle volumes are closer to the corresponding reference volumes than reference low-resolution volumes with bias of [limits of agreement] -3.51 [-18.87, 11.85] mL, and 12.96 [-10.01, 35.92] mL respectively. Finally, the results demonstrate that the proposed approach allows recovering missing shape information and can indirectly correct for limited motion-induced artifacts.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ventrículos do Coração , Função Ventricular Esquerda
2.
Front Cardiovasc Med ; 9: 988840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187009

RESUMO

Background: TAVI has shown to result in immediate and sustained hemodynamic alterations and improvement in health-related quality of life (HRQoL), but previous studies have been suboptimal to predict who might benefit from TAVI. The relationship between immediate hemodynamic changes and outcome has not been studied before. This study sought to assess whether an immediate hemodynamic change, reflecting myocardial contractile reserve, following TAVI is associated with improved HRQoL. Furthermore, it assessed whether pre-procedural cardiac power index (CPI) and left ventricular ejection fraction (LVEF) could predict these changes. Methods: During the TAVI procedure, blood pressure and systemic hemodynamics were prospectively collected with a Nexfin® non-invasive monitor. HRQoL was evaluated pre-procedurally and 12 weeks after the procedure, using the EQ-5D-5L classification tool. Results: Overall, 97/114 (85%) of the included patients were eligible for analyses. Systolic, diastolic and mean arterial pressure, heart rate, and stroke volume increased immediately after TAVI (all p < 0.005), and left ventricular ejection time (LVET) immediately decreased with 10 ms (95%CI = -4 to -16, p < 0.001). Overall HRQoLindex increased from 0.810 [0.662-0.914] before to 0.887 [0.718-0.953] after TAVI (p = 0.016). An immediate decrease in LVET was associated with an increase in HRQoLindex (0.02 index points per 10 ms LVET decrease, p = 0.041). Pre-procedural CPI and LVEF did not predict hemodynamic changes or change in HRQoL. Conclusion: TAVI resulted in an immediate hemodynamic response and increase in HRQoL. Immediate reduction in LVET, suggesting unloading of the ventricle, was associated with an increase in HRQoL, but neither pre-procedural CPI nor LVEF predicted these changes. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03088787.

3.
Comput Biol Med ; 142: 105191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026571

RESUMO

Automatic cardiac chamber and left ventricular (LV) myocardium segmentation over the cardiac cycle significantly extends the utilization of contrast-enhanced cardiac CT, potentially enabling in-depth assessment of cardiac function. Therefore, we evaluate an automatic method for cardiac chamber and LV myocardium segmentation in 4D cardiac CT. In this study, 4D contrast-enhanced cardiac CT scans of 1509 patients selected for transcatheter aortic valve implantation with 21,605 3D images, were divided into development (N = 12) and test set (N = 1497). 3D convolutional neural networks were trained with end-systolic (ES) and end-diastolic (ED) images. Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) were computed for 3D segmentations at ES and ED in the development set via cross-validation, and for 2D segmentations in four cardiac phases for 81 test set patients. Segmentation quality in the full test set of 1497 patients was assessed visually on a three-point scale per structure based on estimated overlap with the ground truth. Automatic segmentation resulted in a mean DSC of 0.89 ± 0.10 and ASSD of 1.43 ± 1.45 mm in 12 patients in 3D, and a DSC of 0.89 ± 0.08 and ASSD of 1.86 ± 1.20 mm in 81 patients in 2D. The qualitative evaluation in the whole test set of 1497 patients showed that automatic segmentations were assigned grade 1 (clinically useful) in 98.5%, 92.2%, 83.1%, 96.3%, and 91.6% of cases for LV cavity and myocardium, right ventricle, left atrium, and right atrium. Our automatic method using convolutional neural networks performed clinically useful segmentation across the cardiac cycle in a large set of 4D cardiac CT images, potentially enabling in-depth assessment of cardiac function.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada Quadridimensional , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
4.
Int J Radiat Oncol Biol Phys ; 112(3): 611-620, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547373

RESUMO

PURPOSE: The purpose of this work is to develop and evaluate an automatic deep learning method for segmentation of cardiac chambers and large arteries, and localization of the 3 main coronary arteries in radiation therapy planning on computed tomography (CT). In addition, a second purpose is to determine the planned radiation therapy dose to cardiac structures for breast cancer therapy. METHODS AND MATERIALS: Eighteen contrast-enhanced cardiac scans acquired with a dual-layer-detector CT scanner were included for method development. Manual reference annotations of cardiac chambers, large arteries, and coronary artery locations were made in the contrast scans and transferred to virtual noncontrast images, mimicking noncontrast-enhanced CT. In addition, 31 noncontrast-enhanced radiation therapy treatment planning CTs with corresponding dose-distribution maps of breast cancer cases were included for evaluation. For reference, cardiac chambers and large vessels were manually annotated in two 2-dimensional (2D) slices per scan (26 scans, totaling 52 slices) and in 3-dimensional (3D) scan volumes in 5 scans. Coronary artery locations were annotated on 3D imaging. The method uses an ensemble of convolutional neural networks with 2 output branches that perform 2 distinct tasks: (1) segmentation of the cardiac chambers and large arteries and (2) localization of coronary arteries. Training was performed using reference annotations and virtual noncontrast cardiac scans. Automatic segmentation of the cardiac chambers and large vessels and the coronary artery locations was evaluated in radiation therapy planning CT with Dice score (DSC) and average symmetrical surface distance (ASSD). The correlation between dosimetric parameters derived from the automatic and reference segmentations was evaluated with R2. RESULTS: For cardiac chambers and large arteries, median DSC was 0.76 to 0.88, and the median ASSD was 0.17 to 0.27 cm in 2D slice evaluation. 3D evaluation found a DSC of 0.87 to 0.93 and an ASSD of 0.07 to 0.10 cm. Median DSC of the coronary artery locations ranged from 0.80 to 0.91. R2 values of dosimetric parameters were 0.77 to 1.00 for the cardiac chambers and large vessels, and 0.76 to 0.95 for the coronary arteries. CONCLUSIONS: The developed and evaluated method can automatically obtain accurate estimates of planned radiation dose and dosimetric parameters for the cardiac chambers, large arteries, and coronary arteries.


Assuntos
Neoplasias da Mama , Vasos Coronários , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Vasos Coronários/diagnóstico por imagem , Feminino , Coração/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
5.
Med Phys ; 47(10): 5048-5060, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32786071

RESUMO

PURPOSE: Deep learning-based whole-heart segmentation in coronary computed tomography angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction. Automatic extraction of these measures in patients undergoing only non-contrast-enhanced CT (NCCT) scanning would be valuable, but defining a manual reference standard that would allow training a deep learning-based method for whole-heart segmentation in NCCT is challenging, if not impossible. In this work, we leverage dual-energy information provided by a dual-layer detector CT scanner to obtain a reference standard in virtual non-contrast (VNC) CT images mimicking NCCT images, and train a three-dimensional (3D) convolutional neural network (CNN) for the segmentation of VNC as well as NCCT images. METHODS: Eighteen patients were scanned with and without contrast enhancement on a dual-layer detector CT scanner. Contrast-enhanced acquisitions were reconstructed into a CCTA and a perfectly aligned VNC image. In each CCTA image, manual reference segmentations of the left ventricular (LV) myocardium, LV cavity, right ventricle, left atrium, right atrium, ascending aorta, and pulmonary artery trunk were obtained and propagated to the corresponding VNC image. These VNC images and reference segmentations were used to train 3D CNNs in a sixfold cross-validation for automatic segmentation in either VNC images or NCCT images reconstructed from the non-contrast-enhanced acquisition. Automatic segmentation in VNC images was evaluated using the Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD). Automatically determined volumes of the cardiac chambers and LV myocardium in NCCT were compared to reference volumes of the same patient in CCTA by Bland-Altman analysis. An additional independent multivendor multicenter set of single-energy NCCT images from 290 patients was used for qualitative analysis, in which two observers graded segmentations on a five-point scale. RESULTS: Automatic segmentations in VNC images showed good agreement with reference segmentations, with an average DSC of 0.897 ± 0.034 and an average ASSD of 1.42 ± 0.45 mm. Volume differences [95% confidence interval] between automatic NCCT and reference CCTA segmentations were -19 [-67; 30] mL for LV myocardium, -25 [-78; 29] mL for LV cavity, -29 [-73; 14] mL for right ventricle, -20 [-62; 21] mL for left atrium, and -19 [-73; 34] mL for right atrium, respectively. In 214 (74%) NCCT images from the independent multivendor multicenter set, both observers agreed that the automatic segmentation was mostly accurate (grade 3) or better. CONCLUSION: Our automatic method produced accurate whole-heart segmentations in NCCT images using a CNN trained with VNC images from a dual-layer detector CT scanner. This method might enable quantification of additional cardiac measures from NCCT images for improved cardiovascular risk prediction.


Assuntos
Aprendizado Profundo , Angiografia por Tomografia Computadorizada , Coração/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...