Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 112: 2-11, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27593501

RESUMO

Mushrooms, such as Schizophyllum commune, have a specific odor. Whether this is linked to mating, prerequisite for mushroom formation, or also found in monokaryotic, unmated strains, was investigated with a comprehensive study on the transcriptome and proteome of this model organism. Mating interactions were investigated using a complete, cytosolic proteome map for unmated, monokaryotic, as well as for mated, dikaryotic mycelia. The regulations of the proteome were compared to transcriptional changes upon mating and to changes in smell by volatilome studies. We could show a good overlap between proteome and transcriptome data, but extensive posttranslational regulation was identified for more than 80% of transcripts. This suggests down-stream regulation upon interaction of mating partners and formation of the dikaryon that is competent to form fruiting bodies. The volatilome was shown to respond to mating by a broader spectrum of volatiles and increased emission of the mushroom smell molecules 3-octanone and 1-octen-3-ol, as well as ethanol and ß-bisabolol in the dikaryon. Putatively involved biosynthetic proteins like alcohol dehydrogenases, Ppo-like oxygenases, or sesquiterpene synthases showed correlating transcriptional regulation depending on either mono- or dikaryotic stages.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Proteoma/análise , Schizophyllum/crescimento & desenvolvimento , Schizophyllum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Interações Microbianas , Recombinação Genética , Schizophyllum/genética
2.
PLoS One ; 10(8): e0135616, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284622

RESUMO

The white-rot fungus Schizophyllum commune (Agaricomycetes) was used to study the cell biology of microtubular trafficking during mating interactions, when the two partners exchange nuclei, which are transported along microtubule tracks. For this transport activity, the motor protein dynein is required. In S. commune, the dynein heavy chain is encoded in two parts by two separate genes, dhc1 and dhc2. The N-terminal protein Dhc1 supplies the dimerization domain, while Dhc2 encodes the motor machinery and the microtubule binding domain. This split motor protein is unique to Basidiomycota, where three different sequence patterns suggest independent split events during evolution. To investigate the function of the dynein heavy chain, the gene dhc1 and the motor domain in dhc2 were deleted. Both resulting mutants were viable, but revealed phenotypes in hyphal growth morphology and mating behavior as well as in sexual development. Viability of strain Δdhc2 is due to the higher expression of kinesin-2 and kinesin-14, which was proven via RNA sequencing.


Assuntos
Núcleo Celular/metabolismo , Dineínas/genética , Schizophyllum/citologia , Schizophyllum/genética , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Dineínas/química , Dineínas/deficiência , Dineínas/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Genoma Fúngico/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...