Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1653: 462364, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34280792

RESUMO

Hydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present. The analytical approach must hence be capable of separating polymers according to minor changes regarding their end group. We demonstrate that liquid chromatography, relying on a monolithic C18-modified silica column and isocratic as well as gradient elution using water / acetonitrile mixtures and varying detectors, can accomplish such demanding high resolution separations. Poly(2-ethyl-2-oxazoline)s (PEtOx) with acetyl, hydroxyl, and phthalimide ω-end groups were investigated. Identification of side products was achieved through coupling with electrospray ionization mass spectrometry. UV / Vis detection was applied to quantify chain transfer products in PEtOx comprising biphenyl moieties. In addition, gradient elution enabled the separation of PEtOx into macromolecules according to their specific degrees of polymerization in molar mass ranges around 2,000 g mol-1.


Assuntos
Cromatografia Líquida , Polímeros , Peso Molecular , Polímeros/síntese química , Prótons
2.
J Colloid Interface Sci ; 584: 592-601, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157492

RESUMO

HYPOTHESIS: A prominent fraction of mobile organic matter in natural aqueous soil solutions is formed by molecules in sizes that seamlessly exceed the lower end of what is defined as a colloid. The hydrodynamics and the functional diversity of these molecules result in a transport behavior that is fundamentally different from smaller compounds. However, there is a lack of "reactive tracers" that allow for the study of colloidal transport phenomena appropriately. We hypothesize that tailor-made and well-defined synthetic polymers can overcome this limitation. EXPERIMENTS: We prepared and characterized the hydrodynamic properties of water-soluble poly(ethylene glycol)s (PEG) and studied their adsorption to mixtures of quartz, illite, and goethite in batch and column experiments. FINDINGS: We used this information to independently predict the transport of PEG with striking agreement to the observed mean breakthrough times in all porous media. As PEG transport can be comprehensively and quantitatively reconstructed, we conclude that functionalized PEGs are promising candidates to be used as tailorable and non-toxic tracers available in the size range of natural organic (macro-)molecules.

3.
Polymers (Basel) ; 10(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30961320

RESUMO

The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard-based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs (Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...