Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 131, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568198

RESUMO

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant inherited disease characterized by age-related cerebellar degeneration and ataxia caused by mutations in the Elongation of Very Long Chain Fatty Acid-4 (ELOVL4) gene. The ELOVL4 enzyme catalyzes the biosynthesis of both very long chain saturated fatty acids (VLC-SFA) and very long chain polyunsaturated fatty acids (VLC-PUFA) that are important for neuronal, reproductive, and skin function. Several variants in ELOVL4 have been shown to cause different tissue-specific disorders including SCA34 with or without Erythrokeratodermia Variabilis (EKV), a skin condition characterized by dry, scaly skin, Autosomal Dominant Stargardt-Like Macular Dystrophy (STGD3), and seizures associated with neuro-ichthyotic disorders. What is puzzling is how different mutations in the same gene seem to cause different tissue-specific disorders. To date, no SCA34 patients have presented with both SCA34 and STGD3 pathology that is caused by ELOVL4 variants that cause truncation of ELOVL4. Here, we report a novel case of an early childhood onset and rapidly progressive cerebellar degeneration and retinal dysfunction in a Belgian-Italian girl who developed severe dysarthria and gait problems starting at about 3.5 years of age and progressed to immobility by 4.5 years of age. Brain magnetic resonance imaging (MRI) revealed progressive vermian, cerebellar, cortical atrophy, progressive corpus callosum slimming, and hot cross bun sign visible on the MRI. Ophthalmological examinations also revealed progressive macular dysfunction as measured by electroretinography. Using exome sequencing, we identified a novel heterozygous ELOVL4 variant, c.503 T > C (p. L168S) in the patient. To understand the enzymatic function of this novel ELOVL4 variant and how it alters the levels of VLC-PUFA and VLC-SFA biosynthesis to contribute to cerebellar and retinal dysfunction, we expressed wild-type ELOVL4 or the L168S ELOVL4 variant in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. We showed that the L168S ELOVL4 variant is deficient in the biosynthesis of VLC-SFA and VLC-PUFA. Our work suggests that differential depletion of these fatty acids may be a contributing factor to the pathogenic mechanism of SCA34 with or without EKV. Further studies will help further define how the different ELOVL4 variants cause different tissue-specific disorders with variable ages of onset.


Assuntos
Degeneração Macular , Ataxias Espinocerebelares , Pré-Escolar , Feminino , Humanos , Degeneração Macular/genética , Ataxia , Convulsões , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética
2.
Antioxidants (Basel) ; 12(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37507924

RESUMO

Necrotizing enterocolitis (NEC) is a neonatal intestinal disease associated with oxidative stress. The targets of peroxidation and the role of the innate intestinal epithelial antioxidant defense system are ill-defined. We hypothesized that oxidative stress in NEC correlates with oxidized GSH redox potentials, lipid peroxidation, and a dysfunctional antioxidant system. Methods: Intestinal samples from infants +/- NEC were generated into enteroids and incubated with lipopolysaccharide (LPS) and hypoxia to induce experimental NEC. HPLC assayed GSH redox potentials. Lipid peroxidation was measured by flow cytometry. Immunoblotting measured glutathione peroxidase 4 (Gpx4) expression. Results: GSH redox potentials were more oxidized in NEC intestinal tissue and enteroids as compared to controls. Lipid radicals in NEC-induced enteroids were significantly increased. Human intestinal tissue with active NEC and treated enteroid cultures revealed decreased levels of Gpx4. Conclusions: The ability of neonatal intestine to mitigate radical accumulation plays a role in its capacity to overcome oxidative stress. Accumulation of lipid radicals is confirmed after treatment of enteroids with NEC-triggering stimuli. Decreased Gpx4 diminishes a cell's ability to effectively neutralize lipid radicals. When lipid peroxidation overwhelms antioxidant machinery, cellular death ensues. Identification of the mechanisms behind GSH-dependent enzyme dysfunction in NEC may provide insights into strategies for reversing radical damage.

3.
J Lipid Res ; 64(5): 100358, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934843

RESUMO

Photoreceptor cells express the patatin-like phospholipase domain-containing 2 (PNPLA2) gene that codes for pigment epithelium-derived factor receptor (PEDF-R) (also known as ATGL). PEDF-R exhibits phospholipase activity that mediates the neurotrophic action of its ligand PEDF. Because phospholipids are the most abundant lipid class in the retina, we investigated the role of PEDF-R in photoreceptors by generating CRISPR Pnpla2 knock-out mouse lines in a retinal degeneration-free background. Pnpla2-/- mice had undetectable retinal Pnpla2 gene expression and PEDF-R protein levels as assayed by RT-PCR and immunofluorescence, respectively. The photoreceptors of mice deficient in PEDF-R had deformities as examined by histology and transmission electron microscopy. Pnpla2 knockdown diminished the PLA2 enzymatic activity of PEDF-R in the retina. Lipidomic analyses revealed the accumulation of lysophosphatidyl choline-DHA and lysophosphatidyl ethanolamine-DHA in PEDF-R-deficient retinas, suggesting a possible causal link to photoreceptor dysfunction. Loss of PEDF-R decreased levels of rhodopsin, opsin, PKCα, and synaptophysin relative to controls. Pnpla2-/- photoreceptors had surface-exposed phosphatidylserine, and their nuclei were TUNEL positive and condensed, revealing an apoptotic onset. Paralleling its structural defects, PEDF-R deficiency compromised photoreceptor function in vivo as indicated by the attenuation of photoreceptor a- and b-waves in Pnpla2-/- and Pnpla2+/- mice relative to controls as determined by electroretinography. In conclusion, ablation of PEDF-R in mice caused alteration in phospholipid composition associated with malformation and malperformance of photoreceptors. These findings identify PEDF-R as an important component for photoreceptor structure and function, highlighting its role in phospholipid metabolism for retinal survival and its consequences.


Assuntos
Degeneração Retiniana , Serpinas , Camundongos , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Serpinas/genética , Serpinas/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retina/metabolismo , Fosfolipases/metabolismo
4.
Front Neurol ; 14: 1113954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937529

RESUMO

Introduction: Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods: EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results: The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion: In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.

5.
Commun Biol ; 6(1): 8, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599953

RESUMO

Transmembrane protein 135 (TMEM135) is thought to participate in the cellular response to increased intracellular lipids yet no defined molecular function for TMEM135 in lipid metabolism has been identified. In this study, we performed a lipid analysis of tissues from Tmem135 mutant mice and found striking reductions of docosahexaenoic acid (DHA) across all Tmem135 mutant tissues, indicating a role of TMEM135 in the production of DHA. Since all enzymes required for DHA synthesis remain intact in Tmem135 mutant mice, we hypothesized that TMEM135 is involved in the export of DHA from peroxisomes. The Tmem135 mutation likely leads to the retention of DHA in peroxisomes, causing DHA to be degraded within peroxisomes by their beta-oxidation machinery. This may lead to generation or alteration of ligands required for the activation of peroxisome proliferator-activated receptor a (PPARa) signaling, which in turn could result in increased peroxisomal number and beta-oxidation enzymes observed in Tmem135 mutant mice. We confirmed this effect of PPARa signaling by detecting decreased peroxisomes and their proteins upon genetic ablation of Ppara in Tmem135 mutant mice. Using Tmem135 mutant mice, we also validated the protective effect of increased peroxisomes and peroxisomal beta-oxidation on the metabolic disease phenotypes of leptin mutant mice which has been observed in previous studies. Thus, we conclude that TMEM135 has a role in lipid homeostasis through its function in peroxisomes.


Assuntos
Ácidos Docosa-Hexaenoicos , Metabolismo dos Lipídeos , Proteínas de Membrana , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Homeostase , Oxirredução , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
6.
Methods Mol Biol ; 2625: 7-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653629

RESUMO

Sucrose gradient centrifugation is a very useful technique for isolating specific membrane types based on their size and density. This is especially useful for detecting fatty acids and lipid molecules that are targeted to specialized membranes. Without fractionation, these types of molecules could be below the levels of detection after being diluted out by the more abundant lipid molecules with a more ubiquitous distribution throughout the various cell membranes. Isolation of specific membrane types where these lipids are concentrated allows for their detection and analysis. We describe herein our synaptic membrane isolation protocol that produces excellent yield and clear resolution of five major membrane fractions from a starting neural tissue homogenate: P1 (nuclear), P2 (cytoskeletal), P3 (neurosynaptosomal), PSD (post-synaptic densities), and SV (synaptic vesicle).


Assuntos
Sacarose , Membranas Sinápticas , Membranas Sinápticas/metabolismo , Sacarose/metabolismo , Centrifugação com Gradiente de Concentração/métodos , Membrana Celular , Centrifugação , Lipídeos , Fracionamento Celular/métodos
7.
J Lipid Res ; 64(1): 100317, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464075

RESUMO

The FA Elongase-4 (ELOVL4) enzyme mediates biosynthesis of both very long chain (VLC)-PUFAs and VLC-saturated FA (VLC-SFAs). VLC-PUFAs play critical roles in retina and sperm function, whereas VLC-SFAs are predominantly associated with brain function and maintenance of the skin permeability barrier. While some ELOVL4 mutations cause Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3), other ELOVL4 point mutations, such as L168F and W246G, affect the brain and/or skin, leading to Spinocerebellar Ataxia-34 (SCA34) and Erythrokeratodermia variabilis. The mechanisms by which these ELOVL4 mutations alter VLC-PUFA and VLC-SFA biosynthesis to cause the different tissue-specific pathologies are not well understood. To understand how these mutations alter VLC-PUFA and VLC-SFA biosynthesis, we expressed WT-ELOVL4, L168F, and W246G ELOVL4 variants in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. Total lipids were extracted, converted to FA methyl esters, and quantified by gas chromatography. We showed that L168F and W246G mutants were capable of VLC-PUFA biosynthesis. W246G synthesized and accumulated 32:6n3, while L168F exhibited gain of function in VLC-PUFA biosynthesis as it made 38:5n3, which we did not detect in WT-ELOVL4 or W246G-expressing cells. However, compared with WT-ELOVL4, both L168F and W246G mutants were deficient in VLC-SFA biosynthesis, especially the W246G protein, which showed negligible VLC-SFA biosynthesis. These results suggest VLC-PUFA biosynthetic capabilities of L168F and W246G in the retina, which may explain the lack of retinal phenotype in SCA34. Defects in VLC-SFA biosynthesis by these variants may be a contributing factor to the pathogenic mechanism of SCA34 and Erythrokeratodermia variabilis.


Assuntos
Eritroceratodermia Variável , Ataxias Espinocerebelares , Masculino , Humanos , Sêmen/metabolismo , Ácidos Graxos Insaturados/metabolismo , Mutação , Proteínas do Olho/genética , Proteínas de Membrana/metabolismo
8.
J Orthop Res ; 40(12): 2771-2779, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279877

RESUMO

Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.


Assuntos
Ácidos Graxos Ômega-3 , Insulinas , Camundongos , Animais , Lipogênese/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/farmacologia , Condrócitos/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36935840

RESUMO

Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.

10.
Biomolecules ; 11(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208233

RESUMO

Age-related macular degeneration (AMD) is a multifactorial disease of unclear etiology. We previously proposed that metabolic adaptations in photoreceptors (PRs) play a role in disease progression. We mimicked these metabolic adaptations in mouse PRs through deletion of the tuberous sclerosis complex (TSC) protein TSC1. Here, we confirm our previous findings by deletion of the other complex protein, namely TSC2, in rod photoreceptors. Similar to deletion of Tsc1, mice with deletion of Tsc2 in rods develop AMD-like pathologies, including accumulation of apolipoproteins, migration of microglia, geographic atrophy, and neovascular pathologies. Subtle differences between the two mouse models, such as a significant increase in microglia activation with loss of Tsc2, were seen as well. To investigate the role of altered glucose metabolism in disease pathogenesis, we generated mice with simulation deletions of Tsc2 and hexokinase-2 (Hk2) in rods. Although retinal lactate levels returned to normal in mice with Tsc2-Hk2 deletion, AMD-like pathologies still developed. The data suggest that the metabolic adaptations in PRs that cause AMD-like pathologies are independent of HK2-mediated aerobic glycolysis.


Assuntos
Degeneração Macular/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glicólise , Hexoquinase/metabolismo , Hexoquinase/fisiologia , Masculino , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/fisiologia , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/fisiologia
11.
Mol Neurobiol ; 58(10): 4921-4943, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227061

RESUMO

Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Plasticidade Neuronal/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Animais , Cerebelo/patologia , Feminino , Masculino , Transtornos Motores/genética , Transtornos Motores/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Ratos Transgênicos
12.
J Lipid Res ; 62: 100030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556440

RESUMO

Lipids play essential roles in maintaining cell structure and function by modulating membrane fluidity and cell signaling. The fatty acid elongase-4 (ELOVL4) protein, expressed in retina, brain, Meibomian glands, skin, testes and sperm, is an essential enzyme that mediates tissue-specific biosynthesis of both VLC-PUFA and VLC-saturated fatty acids (VLC-SFA). These fatty acids play critical roles in maintaining retina and brain function, neuroprotection, skin permeability barrier maintenance, and sperm function, among other important cellular processes. Mutations in ELOVL4 that affect biosynthesis of these fatty acids cause several distinct tissue-specific human disorders that include blindness, age-related cerebellar atrophy and ataxia, skin disorders, early-childhood seizures, mental retardation, and mortality, which underscores the essential roles of ELOVL4 products for life. However, the mechanisms by which one tissue makes VLC-PUFA and another makes VLC-SFA, and how these fatty acids exert their important functional roles in each tissue, remain unknown. This review summarizes research over that last decade that has contributed to our current understanding of the role of ELOVL4 and its products in cellular function. In the retina, VLC-PUFA and their bioactive "Elovanoids" are essential for retinal function. In the brain, VLC-SFA are enriched in synaptic vesicles and mediate neuronal signaling by determining the rate of neurotransmitter release essential for normal neuronal function. These findings point to ELOVL4 and its products as being essential for life. Therefore, mutations and/or age-related epigenetic modifications of fatty acid biosynthetic gene activity that affect VLC-SFA and VLC-PUFA biosynthesis contribute to age-related dysfunction of ELOVL4-expressing tissues.


Assuntos
Proteínas do Olho
13.
Mol Neurobiol ; 57(11): 4735-4753, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32780351

RESUMO

Elongation of very long chain fatty acids-4 (ELOVL4) is essential for synthesis of very long chain polyunsaturated and saturated fatty acids (VLC-PUFA and VLC-SFA, respectively) of chain length greater than 26 carbons. Mutations in the ELOVL4 gene cause several distinct neurodegenerative diseases including Stargardt-like macular dystrophy (STGD3), spinocerebellar ataxia 34 (SCA34), and a neuro-ichthyotic syndrome with severe seizures and spasticity, as well as erythrokeratitis variabilis (EKV), a skin disorder. However, the relationship between ELOVL4 mutations, its VLC-PUFA and VLC-SFA products, and specific neurological symptoms remains unclear. We generated a knock-in rat line (SCA34-KI) that expresses the 736T>G (p.W246G) form of ELOVL4 that causes human SCA34. Lipids were analyzed by gas chromatography and mass spectrometry. Retinal function was assessed using electroretinography. Retinal integrity was assessed by histology, optical coherence tomography, and immunolabeling. Analysis of retina and skin lipids showed that the W246G mutation selectively impaired synthesis of VLC-SFA, but not VLC-PUFA. Homozygous SCA34-KI rats showed reduced ERG a- and b-wave amplitudes by 90 days of age, particularly for scotopic responses. Anatomical analyses revealed no indication of neurodegeneration in heterozygote or homozygote SCA34-KI rats out to 6-7 months of age. These studies reveal a previously unrecognized role for VLC-SFA in regulating retinal function, particularly transmission from photoreceptors to the inner retina, in the absence of neurodegeneration. Furthermore, these findings suggest that the tissue specificity and symptoms associated with disease-causing ELOVL4 mutations likely arise from selective differences in the ability of the mutant ELOVL4 enzymes to support synthesis of VLC-PUFA and/or VLC-SFA.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Ácidos Graxos/metabolismo , Humanos , Visão Noturna , Fenótipo , Ratos , Ratos Transgênicos
14.
Biology (Basel) ; 9(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545642

RESUMO

Inositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases. The PI signals regulate a wide variety of cellular functions, including organelle distinction, vesicular transport, cytoskeletal organization, nuclear events, regulation of ion channels, cell signaling, and host-pathogen interactions. Most of the studies of PIs in ocular tissues are based on the PI enzymes and PI phosphatases. In this study, we examined the PI levels in the cornea, retinal pigment epithelium (RPE), and retina using PI-binding protein as probes. We have examined the lipids PI(3)P, PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, and each is present in the cornea, RPE, and retina. Alterations in the levels of these PIs in mouse models of retinal disease and corneal infections have been reported, and the results of our study will help in the management of anomalous phosphoinositide metabolism in ocular tissues.

15.
Proc Natl Acad Sci U S A ; 117(23): 13094-13104, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434914

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. While the histopathology of the different disease stages is well characterized, the cause underlying the progression, from the early drusen stage to the advanced macular degeneration stage that leads to blindness, remains unknown. Here, we show that photoreceptors (PRs) of diseased individuals display increased expression of two key glycolytic genes, suggestive of a glucose shortage during disease. Mimicking aspects of this metabolic profile in PRs of wild-type mice by activation of the mammalian target of rapamycin complex 1 (mTORC1) caused early drusen-like pathologies, as well as advanced AMD-like pathologies. Mice with activated mTORC1 in PRs also displayed other early disease features, such as a delay in photoreceptor outer segment (POS) clearance and accumulation of lipofuscin in the retinal-pigmented epithelium (RPE) and of lipoproteins at the Bruch's membrane (BrM), as well as changes in complement accumulation. Interestingly, formation of drusen-like deposits was dependent on activation of mTORC1 in cones. Both major types of advanced AMD pathologies, including geographic atrophy (GA) and neovascular pathologies, were also seen. Finally, activated mTORC1 in PRs resulted in a threefold reduction in di-docosahexaenoic acid (DHA)-containing phospholipid species. Feeding mice a DHA-enriched diet alleviated most pathologies. The data recapitulate many aspects of the human disease, suggesting that metabolic adaptations in photoreceptors could contribute to disease progression in AMD. Identifying the changes downstream of mTORC1 that lead to advanced pathologies in mouse might present new opportunities to study the role of PRs in AMD pathogenesis.


Assuntos
Envelhecimento/patologia , Macula Lutea/patologia , Degeneração Macular/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Lâmina Basilar da Corioide/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipofuscina/metabolismo , Lipoproteínas/metabolismo , Macula Lutea/citologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo , Epitélio Pigmentado da Retina/metabolismo
16.
J Assist Reprod Genet ; 36(7): 1379-1385, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073727

RESUMO

PURPOSE: To determine if levels of very long chain polyunsaturated fatty acids (VLC-PUFA; ≥ 28 carbons;4-6 double bonds) in human sperm correlate with sperm quantity and quality as determined by a complete semen analysis. METHODS: Ejaculates from 70 men underwent a complete semen analysis, which included volume, count, motility, progression, agglutination, viscosity, morphology, and pH. For lipid analysis, sperm were pelleted to remove the semen. Lipids were extracted from the cell pellet and methyl esters of total lipids analyzed by gas chromatography. The sphingolipids were enriched and sphingomyelin (SM) species measured using tandem mass spectrometry. Pair-wise Pearson correlation and linear regression analysis compared percent VLC-PUFA-SM and percent docosahexaenoic acid (DHA) to results from the semen analysis. RESULTS: VLC-PUFA-SM species having 28-34 carbon fatty acids were detected in sperm samples, with 28 and 30 carbon VLC-PUFA as most the abundant. The sum of all VLC-PUFA-SM species comprised 0 to 6.1% of the overall SM pool (mean 2.1%). Pair-wise Pearson analyses showed that lower levels of VLC-PUFA-SM positively correlated with lower total motile count (0.68) and lower total count (0.67). Total VLC-PUFA-SM and mole % DHA (22:6n3) were not strongly correlated (- 0.24). Linear regression analysis confirmed these findings. CONCLUSION: This study revealed a positive correlation between the levels of VLC-PUFA with sperm count and total motile count and suggests that both sperm quality and quantity may depend on the presence of VLC-PUFA. The lack of correlation between VLC-PUFA and DHA suggests that low VLC-PUFA levels do not result from inadequate PUFA precursors.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Esfingomielinas/metabolismo , Adolescente , Adulto , Ácidos Graxos Insaturados/genética , Fertilidade/genética , Humanos , Lipídeos/química , Lipídeos/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Análise do Sêmen , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia , Esfingomielinas/genética , Espectrometria de Massas em Tandem , Adulto Jovem
17.
J Lipid Res ; 59(9): 1586-1596, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986998

RESUMO

Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/química , Glicerofosfolipídeos/metabolismo , Camundongos
18.
Cell Death Dis ; 9(2): 240, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445082

RESUMO

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6ß. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6ß promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Piruvato Quinase/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Transcrição Gênica , Animais , Apoptose/genética , Isótopos de Carbono , Membrana Celular/química , Membrana Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , NADP/metabolismo , Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/deficiência , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Transdução de Sinais , Coloração e Rotulagem/métodos , Tomografia de Coerência Óptica , Triglicerídeos/metabolismo
19.
PLoS One ; 13(1): e0190514, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293603

RESUMO

Mutations in the elongation of very long chain fatty acid 4 (ELOVL4) gene cause Stargardt macular dystrophy 3 (STGD3), a rare, juvenile-onset, autosomal dominant form of macular degeneration. Although several mouse models have already been generated to investigate the link between the three identified disease-causing mutations in the ELOVL4 gene, none of these models recapitulates the early-onset cone photoreceptor cell death observed in the macula of STGD3 patients. To address this specifically, we investigated the effect of mutant ELOVL4 in a mouse model with an all-cone retina. Hence, we bred mice carrying the heterozygously mutated Elovl4 gene on the R91W;Nrl-/- all-cone background and analyzed the retinal lipid composition, morphology, and function over the course of 1 year. We observed a reduction of total phosphatidylcholine-containing very long chain-polyunsaturated fatty acids (PC-VLC-PUFAs) by 39% in the R91W;Nrl-/-;Elovl4 mice already at 6 weeks of age with a pronounced decline of the longest forms of PC-VLC-PUFAs. Total levels of shorter-chain fatty acids (< C26) remained unaffected. However, this reduction in PC-VLC-PUFA content in the all-cone retina had no impact on morphology or function and did not accelerate retinal degeneration in the R91W;Nrl-/-;Elovl4 mice. Taken together, mutations in the ELOVL4 gene lead to cone degeneration in humans, whereas mouse models expressing the mutant Elovl4 show predominant rod degeneration. The lack of a phenotype in the all-cone retina expressing the mutant form of the protein supports the view that aberrant function of ELOVL4 is especially detrimental for rods in mice and suggests a more subtle role of VLC-PUFAs for cone maintenance and survival.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Células Fotorreceptoras Retinianas Cones/patologia , Deleção de Sequência , Animais , Eletrorretinografia , Proteínas do Olho/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras Retinianas Cones/metabolismo
20.
Mol Neurobiol ; 55(2): 1795-1813, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168048

RESUMO

Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular mechanisms by which VLC-SFA regulate synaptic function may provide new targets for improved seizure therapies.


Assuntos
Proteínas do Olho/metabolismo , Ácidos Graxos/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Convulsões/metabolismo , Animais , Modelos Animais de Doenças , Proteínas do Olho/genética , Ácidos Graxos/farmacologia , Hipocampo/efeitos dos fármacos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...