Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(1): 645-664, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994990

RESUMO

Age-related neurocognitive disorders are common problems in developed societies. Aging not only affects memory processes, but may also disturb attention, vigilance, and other executive functions. In the present study, we aimed to investigate age-related cognitive deficits in rats and associated molecular alterations in the brain. We also aimed to test the effects of the alpha7 nicotinic acetylcholine receptor (nAChR) agonist PHA-543613 on memory as well as on the sustained attention and vigilance of aged rats. Short- and long-term spatial memories of the rats were tested using the Morris water maze (MWM) task. To measure attention and vigilance, we designed a rat version of the psychomotor vigilance task (PVT) that is frequently used in human clinical examinations. At the end of the behavioral experiments, mRNA and protein expression of alpha7 nAChRs, cytokines, and brain-derived neurotrophic factor (BDNF) were quantitatively measured in the hippocampus, frontal cortex, striatum, and cerebellum. Aged rats showed marked cognitive deficits in both the MWM and the PVT. The deficit was accompanied by increased IL-1beta and TNFalpha mRNA expression and decreased BDNF protein expression in the hippocampus. PHA-543613 significantly improved the reaction time of aged rats in the PVT, especially for unexpectedly appearing stimuli, while only slightly (non-significantly) alleviating spatial memory deficits in the MWM. These results indicate that targeting alpha7 nAChRs may be an effective strategy for the amelioration of attention and vigilance deficits in age-related neurocognitive disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Ratos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Encéfalo/metabolismo , RNA Mensageiro
2.
Pharmaceutics ; 14(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297502

RESUMO

Songorine (SON) is a diterpenoid alkaloid from Aconitum plants. Preparations of Aconitum roots have been employed in traditional oriental herbal medicine, however, their mechanisms of action are still unclear. Since GABA-receptors are possible brain targets of SON, we investigated which subtypes of GABA-receptors contribute to the effects of SON, and how SON affects anxiety-like trait behavior and psychomotor cognitive performance of rats. First, we investigated the effects of microiontophoretically applied SON alone and combined with GABA-receptor agents picrotoxin and saclofen on neuronal firing activity in various brain areas. Next, putative anxiolytic effects of SON (1.0-3.0 mg/kg) were tested against the GABA-receptor positive allosteric modulator reference compound diazepam (1.0-5.0 mg/kg) in the elevated zero maze (EOM). Furthermore, basic cognitive effects were assessed in a rodent version of the psychomotor vigilance task (PVT). Local application of SON predominantly inhibited the firing activity of neurons. This inhibitory effect of SON was successfully blocked by GABA(A)-receptor antagonist picrotoxin but not by GABA(B)-receptor antagonist saclofen. Similar to GABA(A)-receptor positive allosteric modulator diazepam, SON increased the time spent by animals in the open quadrants of the EOM without any signs of adverse psychomotor and cognitive effects observed in the PVT. We showed that, under in vivo conditions, SON acts as a potent GABA(A)-receptor agonist and effectively decreases anxiety without observable side effects. The present findings facilitate the deeper understanding of the mechanism of action and the widespread pharmacological use of diterpene alkaloids in various CNS indications.

3.
Psychopharmacology (Berl) ; 238(11): 3273-3281, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387707

RESUMO

RATIONALE: There are controversial pieces of evidence whether combination therapies using memantine and cholinesterase inhibitors are beneficial over their monotreatments. However, results of preclinical studies are promising when memantine is combined with agonists and allosteric modulators of the alpha7 nicotinic acetylcholine receptor (nAChR). OBJECTIVES: Here, we tested the hypothesis that cognitive enhancer effects of memantine can be potentiated through modulating alpha7 nAChRs in a scopolamine-induced amnesia model. METHODS: Monotreatments, as well as co-administrations of selective alpha7 nicotinic acetylcholine receptor agonist PHA-543613 and memantine were tested in the Morris water maze task in rats. The efficacy of the co-administration treatment was observed on different domains of spatial episodic memory. RESULTS: Low dose of memantine (0.1 mg/kg) and PHA-543613 (0.3 mg/kg) successfully reversed scopolamine-induced short-term memory deficits both in monotreatments and in co-administration. When recall of information from long-term memory was tested, pharmacological effects caused by co-administration of subeffective doses of memantine and PHA-543613 exceeded that of their monotreatments. CONCLUSION: Our results further support the evidence of beneficial interactions between memantine and alpha7 nAChR ligands and suggest a prominent role of alpha7 nAChRs in the procognitive effects of memantine.


Assuntos
Doença de Alzheimer , Nootrópicos , Doença de Alzheimer/tratamento farmacológico , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Memantina/farmacologia , Memantina/uso terapêutico , Teste do Labirinto Aquático de Morris , Nootrópicos/uso terapêutico , Quinuclidinas , Ratos , Receptor Nicotínico de Acetilcolina alfa7
4.
Front Neurosci ; 14: 474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581670

RESUMO

Background: Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. In vivo detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas. Objective: Our aim was to examine the temporal dynamics of stress-induced structural changes with repeated in vivo DTI scans and correlate them with behavioral alterations. Methods: Out of 32 young adult male rats, 16 were exposed to daily immobilization stress for 3 weeks. Four DTI measurements were done: one before the stress exposure (baseline), two scans during the stress (acute and chronic phases), and a last one 2 weeks after the end of the stress protocol (recovery). We used a 4.7T small-animal MRI system and examined 18 gray and white matter structures calculating the following parameters: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). T2-weighted images were used for volumetry. Cognitive performance and anxiety levels of the animals were assessed in the Morris water maze, novel object recognition, open field, and elevated plus maze tests. Results: Reduced FA and increased MD and RD values were found in the corpus callosum and external capsule of stressed rats. Stress increased RD in the anterior commissure and reduced MD and RD in the amygdala. We observed time-dependent changes in several DTI parameters as the rats matured, but we found no evidence of stress-induced volumetric alterations in the brains. Stressed rats displayed cognitive impairments and we found numerous correlations between the cognitive performance of the animals and between various DTI metrics of the inferior colliculus, corpus callosum, anterior commissure, and amygdala. Conclusions: Our data provide further support to the translational value of DTI studies and suggest that chronic stress exposure results in similar white matter microstructural alterations that have been documented in stress-related psychiatric disorders. These DTI findings imply microstructural abnormalities in the brain, which may underlie the cognitive deficits that are often present in stress-related mental disorders.

5.
Behav Brain Res ; 378: 112268, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31580914

RESUMO

Repetitive mild traumatic brain injuries (TBI) impair cognitive abilities and increase risk of neurodegenerative disorders in humans. We developed two repetitive mild TBI models in rats with different time intervals between successive weight-drop injuries. Rats were subjected to repetitive Sham (no injury), single mild (mTBI), repetitive mild (rmTBI - 5 hits, 24 h apart), rapid repetitive mild (rapTBI - 5 hits, 5 min apart) or a single severe (sTBI) TBI. Cognitive performance was assessed 2 and 8 weeks after TBI in the novel object recognition test (NOR), and 6-7 weeks after TBI in the water maze (MWM). Acute immunohistochemical markers were evaluated 24 h after TBI, and blood biomarkers were measured with ELISA 8 weeks after TBI. In the NOR, both rmTBI and rapTBI showed poor performance at 2 weeks post-injury. At 8 weeks post-injury, the rmTBI group still performed worse than the Sham and mTBI groups, while the rapTBI group recovered. In the MWM, the rapTBI group performed worse than the Sham and mTBI groups. Acute APP and RMO-14 immunohistochemistry showed axonal injury at the pontomedullary junction in the sTBI, but not in other groups. ELISA showed increased serum GFAP levels 8 weeks after sTBI, while no differences were found between the injury groups in the levels of phosphorylated-tau and S100ß. Results suggest that the rmTBI protocol is the most suitable model for testing cognitive impairment after mild repetitive head injuries and that the prolonged cognitive impairment after repetitive mild TBI originates from different structural and molecular mechanisms compared to similar impairments after single sTBI.


Assuntos
Concussão Encefálica/fisiopatologia , Encefalopatia Traumática Crônica/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Transtornos da Memória/fisiopatologia , Animais , Comportamento Animal/fisiologia , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Encefalopatia Traumática Crônica/complicações , Encefalopatia Traumática Crônica/metabolismo , Encefalopatia Traumática Crônica/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Ratos , Ratos Long-Evans , Reconhecimento Psicológico/fisiologia
6.
Front Pharmacol ; 10: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804787

RESUMO

Alpha7 nicotinic acetylcholine receptors (nAChRs) play an important role in learning and memory and are promising targets for pharmacological cognitive enhancement. Memantine, an approved substance for Alzheimer's disease treatment, is an antagonist of the N-Methyl-D-aspartate receptor (NMDAR) and also acts as an alpha7 nAChR antagonist. Here, we tested the interaction between an alpha7 nAChR agonist (PHA-543613) and memantine. Efficacy of memantine, PHA-543613, and their co-administration were investigated on the spatial working memory of rats using the spontaneous alternation paradigm in T-maze. Scopolamine-induced transient amnesia was used to model cognitive impairment. First, the dose-response relationship was assessed for memantine, and its lowest effective dose was found to be 0.1 mg/kg. Then, co-administration treatments with subeffective doses of the alpha7 nAChR agonist PHA-543613 and different doses of memantine were tested. The co-administration of subeffective drug doses significantly improved memory performance of the rats and reversed scopolamine-induced deficits. Interestingly, a higher than effective (0.3 mg/kg) dose of memantine did not increase performance in monotreatment, only in co-administration with PHA-543613. However, the co-administration of PHA-543613 did not further increase the efficacy of the previously effective monotreatment doses of memantine. Thus, the efficacy of memantine monotreatment and its co-administration with PHA-543613 converged to create a common ceiling effect, with an additive interaction found in the behavioral effects. These results suggest that memantine and PHA-543613 may exert their cognitive enhancer effects on the same target, possibly on the alpha7 nAChRs. Results also suggest possible benefits of a combination therapy with memantine and alpha7 nAChR agonists.

7.
Behav Brain Res ; 278: 404-10, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447295

RESUMO

The aim of the present study was to compare the cognitive enhancer potential of a recently identified highly selective α7 nicotinic receptor agonist PHA-543613 in scopolamine induced cholinergic and in MK-801 induced glutamatergic transient amnesia models in adult male Wistar rats. Spontaneous alternation paradigm in the T-maze was used as it is considered a reliable measure of spatial working memory and as T-maze performance is highly dependent on the functioning of the hippocampus and the prefrontal cortex. Scopolamine (0.5 mg/kg) and MK-801 (0.1 mg/kg) caused similar decrease of alternation rate and increased locomotion. Prior administration of PHA-543613 (1 or 3 mg/kg) dose dependently and completely reversed scopolamine induced impairment of alternation. However, PHA-543613 had lower efficacy in the MK-801 induced transient amnesia model, as the pharmacologically induced memory deficit was only partially reversed and an inverted U-shaped dose-response was found. PHA-543613 did not modulate either scopolamine or MK-801 induced increased locomotor activity or decreased choice latency. Results suggest that the α7 nicotinic receptor agonist had better efficacy to alleviate working memory deficits of rats caused by cholinergic receptor dysfunction, when NMDA receptors were not primarily targeted. On the other hand, the same memory enhancer strategy through α7 cholinergic receptors was apparently less effective when glutamatergic transmission (via NMDARs) was directly impaired by MK-801 treatment. The present results provide data supporting the need of parallel comprehensive testing of novel drug-candidates for cognitive impairment in distinct preclinical models of memory deficits.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Agonistas Colinérgicos/uso terapêutico , Demência/tratamento farmacológico , Quinuclidinas/uso terapêutico , Memória Espacial/efeitos dos fármacos , Animais , Antagonistas Colinérgicos/toxicidade , Demência/induzido quimicamente , Modelos Animais de Doenças , Maleato de Dizocilpina/toxicidade , Vias de Administração de Medicamentos , Antagonistas de Aminoácidos Excitatórios/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Escopolamina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...