Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 197: 115663, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897967

RESUMO

Radioactive cesium (137Cs) is distributed in the world's oceans as a result of global fallout from atmospheric nuclear weapons tests, releases from fuel reprocessing plants, and inputs from nuclear power plant accident. In order to detect future radionuclide contamination, it is necessary to establish a baseline global distribution of radionuclides such as 137Cs and to understand the ocean transport processes that lead to that distribution. In order to aid in the interpretation of the observed database, we have conducted a suite of simulations of the distribution of 137Cs using a global ocean general circulation model (OGCM). Simulated 137Cs radioactivity concentrations agree well with observations, and the results were used to estimate the changes in inventories for each ocean basin. 137Cs activity concentration from atmospheric nuclear weapons tests are expected to be detectable in the world ocean until at least 2030.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Oceanos e Mares , Radioisótopos de Césio/análise , Japão , Oceano Pacífico
2.
J Adv Model Earth Syst ; 12(10): e2020MS002118, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33282115

RESUMO

The thermal component of oceanic eddy available potential energy (EPE) generation due to air-sea interaction is proportional to the product of anomalous sea surface temperature (SST) and net air-sea heat flux (SHF). In this study we assess EPE generation and its timescale and space-scale dependence from observations and a high-resolution coupled climate model. A dichotomy exists in the literature with respect to the sign of this term, that is, whether it is a source or a sink of EPE. We resolve this dichotomy by partitioning the SST and net heat flux into climatological mean, climatological seasonal cycle, and remaining transient contributions, thereby separating the mesoscale eddy variability from the forced seasonal cycle. In this decomposition the mesoscale air-sea SST-SHF feedbacks act as a 0.1 TW global sink of EPE. In regions of the ocean with a large seasonal cycle, for example, midlatitudes of the Northern Hemisphere, the EPE generation by the forced seasonal cycle exceeds the mesoscale variability sink, such that the global generation by seasonal plus eddy variability acts as a 0.8 TW source. EPE destruction is largest in the midlatitude western boundary currents due to mesoscale air-sea interaction and in the tropical Pacific where SST variability is due mainly to the El Niño-Southern Oscillation. The EPE sink in western boundary currents is spatially aligned with SST gradients and offset to the poleward side of currents, while the mean and seasonal generation are aligned with the warm core of the current. By successively smoothing the data in space and time we find that half of the EPE sink is confined to timescales less than annual and length scales less than 2°, within the oceanic mesoscale band.

3.
Bull Am Meteorol Soc ; 98(11): 2429-2454, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30270923

RESUMO

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

4.
Nature ; 535(7613): 533-7, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466126

RESUMO

Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean's western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies-energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents-the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air-sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20-40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models' representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...