Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(20): 29689-707, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27102439

RESUMO

Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRß. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.


Assuntos
Comunicação Autócrina/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos
2.
Biopolymers ; 96(1): 4-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20235194

RESUMO

Osteogenesis imperfecta (OI), a disorder characterized by fragile bones, is often a consequence of missense mutations in type I collagen, which change one Gly in the repeating (Gly-Xaa-Yaa)(n) sequence to a larger amino acid. The impact of local environment and the identity of the residue replacing Gly were investigated using two sets of triple-helical peptides. Gly mutations in the highly stable (Pro-Hyp-Gly)(10) system are compared with mutations in T1-865 peptides where the mutation is located within a less stable natural collagen sequence. Replacement of a Gly residue by Ala, Ser, or Arg leads to significant triple-helical destabilization in both peptide systems. The loss of stability (ΔT(m) ) due to a Gly to Ala or Gly to Ser change was greater in the more rigid (Pro-Hyp-Gly)(10) peptides than in the T1-865 set, as expected. But the final T(m) values, which may be the more biologically meaningful parameters, were higher for the (Pro-Hyp-Gly)(10) mutation peptides than for the corresponding T1-865 mutation peptides. In both peptide environments, a Gly to Arg replacement prevented the formation of a fully folded triple-helix. Monitoring of folding by differential scanning calorimetry showed a lower stability species as well as the fully folded triple-helical molecules for T1-865 peptides with Gly to Ala or Ser replacements, and this lower stability species disappears as a function of time. The difficulty in propagation through a mutation site in T1-865 peptides may relate to the delayed folding seen in OI collagens and indicates a dependence of folding mechanism on the local sequence environment.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/genética , Mutação , Dobramento de Proteína , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Glicina/química , Glicina/genética , Humanos , Dados de Sequência Molecular , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Peptídeos/química , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Termodinâmica
3.
Biophys Chem ; 141(2-3): 222-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19251353

RESUMO

The influence of proteins and solutes on hysteresis of freezing and melting of water was measured by infrared (IR) spectroscopy. Of the solutes examined, poly-L-arginine and flounder antifreeze protein produced the largest freezing point depression of water, with little effect on the melting temperature. Poly-L-lysine, poly-L-glutamate, cytochrome c and bovine serum albumin had less effect on the freezing of water. Small compounds used to mimic non-polar (trimethylamine N-oxide, methanol), positively charged (guanidinium chloride, NH(4)Cl, urea) and negatively charged (Na acetate) groups on protein surfaces were also examined. These molecules and ions depress water's freezing point and the melting profiles became broad. Since infrared absorption measures both bulk solvent and solvent bound to the solutes, this result is consistent with solutes interacting with liquid water. The amide I absorption bands of antifreeze protein and poly-L-arginine do not detectably change with the phase transition of water. An interpretation is that the antifreeze protein and poly-L-arginine order liquid water such that the water around the group is ice-like.


Assuntos
Proteínas Anticongelantes/química , Proteínas/química , Água/química , Cloreto de Amônio/química , Animais , Bovinos , Citocromos c/química , Linguado , Congelamento , Ácido Glutâmico/química , Guanidina/química , Metanol/química , Metilaminas/química , Peptídeos/química , Polilisina/química , Soroalbumina Bovina/química , Acetato de Sódio/química , Espectrofotometria Infravermelho , Temperatura , Temperatura de Transição , Ureia/química
4.
J Am Chem Soc ; 129(25): 7877-84, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17550251

RESUMO

X-ray crystallography of collagen model peptides has provided high-resolution structures of the basic triple-helical conformation and its water-mediated hydration network. Vibrational spectroscopy provides a useful bridge for transferring the structural information from X-ray diffraction to collagen in its native environment. The vibrational mode most useful for this purpose is the amide I mode (mostly peptide bond C=O stretch) near 1650 cm-1. The current study refines and extends the range of utility of a novel simulation method that accurately predicts the infrared (IR) amide I spectral contour from the three-dimensional structure of a protein or peptide. The approach is demonstrated through accurate simulation of the experimental amide I contour in solution for both a standard triple helix, (Pro-Pro-Gly)10, and a second peptide with a Gly --> Ala substitution in the middle of the chain that models the effect of a mutation in the native collagen sequence. Monitoring the major amide I peak as a function of temperature gives sharp thermal transitions for both peptides, similar to those obtained by circular dichroism spectroscopy, and the Fourier transform infrared (FTIR) spectra of the unfolded states were compared with polyproline II. The simulation studies were extended to model early stages of thermal denaturation of (Pro-Pro-Gly)10. Dihedral angle changes suggested by molecular dynamics simulations were made in a stepwise fashion to generate peptide unwinding from each end, which emulates the effect of increasing temperature. Simulated bands from these new structures were then compared to the experimental bands obtained as temperature was increased. The similarity between the simulated and experimental IR spectra lends credence to the simulation method and paves the way for a variety of applications.


Assuntos
Colágeno/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Colágeno/genética , Colágeno/metabolismo , Conformação Proteica , Dobramento de Proteína , Temperatura
5.
J Biol Chem ; 281(48): 36937-43, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16998200

RESUMO

Missense mutations in the collagen triple helix that replace one Gly residue in the (Gly-X-Y)(n) repeating pattern by a larger amino acid have been shown to delay triple helix folding. One hypothesis is that such mutations interfere with the C- to N-terminal directional propagation and that the identity of the residues immediately N-terminal to the mutation site may determine the delay time and the degree of clinical severity. Model peptides are designed to clarify the role of tripeptide sequences N-terminal to the mutation site, with respect to length, stability, and nucleation propensity, to complete triple helix folding. Two sets of peptides with different N-terminal sequences, one with the natural sequence alpha1(I) 886-900, which is just adjacent to the Gly(901) mutation, and one with a GPO(GAO)(3) sequence, which occurs at alpha1(I) 865-879, are studied by CD and NMR. Placement of the five tripeptides of the natural alpha1(I) collagen sequence N-terminal to the Gly to Ala mutation site results in a peptide that is folded only C-terminal to the mutation site. In contrast, the presence of the Hyp-rich sequence GPO(GAO)(3) N-terminal to the mutation allows complete refolding in the presence of the mutation. The completely folded peptide contains an ordered central region with unusual hydrogen bonding while maintaining standard triple helix structure at the N- and C-terminal ends. These peptide results suggest that the location and sequences of downstream regions favorable for renucleation could be the key factor in the completion of a triple helix N-terminal to a mutation.


Assuntos
Colágeno/química , Glicina/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Colágeno Tipo I/química , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
6.
J Biol Chem ; 281(44): 33283-90, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16963782

RESUMO

Interest in self-association of peptides and proteins is motivated by an interest in the mechanism of physiologically higher order assembly of proteins such as collagen as well as the mechanism of pathological aggregation such as beta-amyloid formation. The triple helical form of (Pro-Hyp-Gly)(10), a peptide that has proved a useful model for molecular features of collagen, was found to self-associate, and its association properties are reported here. Turbidity experiments indicate that the triple helical peptide self-assembles at neutral pH via a nucleation-growth mechanism, with a critical concentration near 1 mM. The associated form is more stable than individual molecules by about 25 degrees C, and the association is reversible. The rate of self-association increases with temperature, supporting an entropically favored process. After self-association, (Pro-Hyp-Gly)(10) forms branched filamentous structures, in contrast with the highly ordered axially periodic structure of collagen fibrils. Yet a number of characteristics of triple helix assembly for the peptide resemble those of collagen fibril formation. These include promotion of fibril formation by neutral pH and increasing temperature; inhibition by sugars; and a requirement for hydroxyproline. It is suggested that these similar features for peptide and collagen self-association are based on common lateral underlying interactions between triple helical molecules mediated by hydrogen-bonded hydration networks involving hydroxyproline.


Assuntos
Colágeno/química , Colágeno/metabolismo , Varredura Diferencial de Calorimetria , Metabolismo dos Carboidratos , Colágeno/ultraestrutura , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Peptídeos/química , Peptídeos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...