Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 4(6): 714-24, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15886068

RESUMO

Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Diploide , Fibroblastos/enzimologia , Mutação da Fase de Leitura , Western Blotting , Cafeína/farmacologia , Linhagem Celular Transformada , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Ecdisterona/análogos & derivados , Ecdisterona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Dosagem de Genes , Teste de Complementação Genética , Variação Genética , Humanos , Hipoxantina Fosforribosiltransferase/genética , Cinética , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Raios Ultravioleta , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia
2.
Cancer Res ; 64(18): 6469-75, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15374956

RESUMO

Cisplatin, a widely used chemotherapeutic agent, has been implicated in the induction of secondary tumors in cancer patients. This drug is presumed to be mutagenic because of error-prone translesion synthesis of cisplatin adducts in DNA. Oxaliplatin is effective in cisplatin-resistant tumors, but its mutagenicity in humans has not been reported. The polymerases involved in bypass of cisplatin and oxaliplatin adducts in vivo are not known. DNA polymerase eta is the most efficient polymerase for bypassing platinum adducts in vitro. We evaluated the role of polymerase eta in translesion synthesis past platinum adducts by determining cytotoxicity and induced mutation frequencies at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in diploid human fibroblasts. Normal human fibroblasts (NHF1) were compared with xeroderma pigmentosum variant (XPV) cells (polymerase eta-null) after treatment with cisplatin. In addition, XPV cells complemented for polymerase eta expression were compared with the isogenic cells carrying the empty expression vector. Cytotoxicity and induced mutagenicity experiments were measured in parallel in UVC-irradiated fibroblasts. We found that equitoxic doses of cisplatin induced mutations in fibroblasts lacking polymerase eta at frequencies 2- to 2.5-fold higher than in fibroblasts with either normal or high levels of polymerase eta. These results indicate that polymerase eta is involved in error-free translesion synthesis past some cisplatin adducts. We also found that per lethal event, cisplatin was less mutagenic than UVC. Treatment with a wide range of cytotoxic doses of oxaliplatin did not induce mutations above background levels in cells either expressing or lacking polymerase eta, suggesting that oxaliplatin is nonmutagenic in human fibroblasts.


Assuntos
Cisplatino/farmacologia , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Fibroblastos/enzimologia , Compostos Organoplatínicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cisplatino/metabolismo , DNA/genética , DNA Polimerase Dirigida por DNA/biossíntese , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Mutação da Fase de Leitura , Deleção de Genes , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Compostos Organoplatínicos/metabolismo , Oxaliplatina , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
3.
Mutat Res ; 532(1-2): 85-102, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14643431

RESUMO

The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.


Assuntos
Cafeína/farmacologia , Ciclo Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/fisiologia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular , Linhagem Celular , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , DNA/genética , DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Zíper de Leucina , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor , Raios Ultravioleta
4.
Carcinogenesis ; 23(6): 959-65, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12082017

RESUMO

Lack of DNA polymerase eta and the attendant defect in bypass replication of pyrimidine dimers induced in DNA by ultraviolet light (UV) underlie the enhanced mutagenesis and carcinogenesis observed in xeroderma pigmentosum variant (XP-V). We investigated whether diploid XP-V fibroblasts growing in culture are also more susceptible to UV-induced clastogenesis than normal human fibroblasts (NHF). This study utilized diploid fibroblasts immortalized by the ectopic expression of human telomerase. The cell lines displayed checkpoint responses to DNA damage comparable with those measured in the parental strains. Shortly after exposure to low doses of UVC (< or =4 J/m2), XP-V cells accumulated daughter strand gaps in excess of normal controls (>25-fold). Daughter strand gaps generated in UV-irradiated S phase cells are potential precursors of chromatid-type chromosomal aberrations. Nonetheless, chromatid-type chromosomal aberrations were only 1.5 to 2 times more abundant in XP-V than in NHF exposed to the same UVC dose. XP-V cells, however, displayed S phase delays at lower doses of UVC and for longer periods of time than NHF. These results support the hypothesis that aberrant DNA structures activate S phase checkpoint responses that increase the time available for postreplication repair. Alternatively, cells that cannot be properly repaired remain permanently arrested and never reach mitosis. These responses protect human cells from chromosomal aberrations, especially when other pathways, such as accurate lesion bypass, are lost.


Assuntos
Testes de Carcinogenicidade , Transformação Celular Neoplásica/efeitos da radiação , Aberrações Cromossômicas , Dano ao DNA/efeitos da radiação , DNA/genética , Variação Genética , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Linhagem Celular , DNA/efeitos da radiação , Feto , Humanos , Cariotipagem , Pulmão , Reação em Cadeia da Polimerase , Valores de Referência , Fase S/efeitos da radiação , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...