Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 27, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788598

RESUMO

Most research on glutamate spillover focuses on the deleterious consequences of postsynaptic glutamate receptor overactivation. However, two decades ago, it was noted that the glial coverage of hippocampal synapses is asymmetric: astrocytic coverage of postsynaptic sites exceeds coverage of presynaptic sites by a factor of four. The fundamental relevance of this glial asymmetry remains poorly understood. Here, we used the glutamate biosensor iGluSnFR, and restricted its expression to either CA3 or CA1 neurons to visualize glutamate dynamics at pre- and postsynaptic microenvironments, respectively. We demonstrate that inhibition of the primarily astrocytic glutamate transporter-1 (GLT-1) slows glutamate clearance to a greater extent at presynaptic compared to postsynaptic membranes. GLT-1 expression was reduced early in a mouse model of AD, resulting in slower glutamate clearance rates at presynaptic but not postsynaptic membranes that opposed presynaptic short-term plasticity. Overall, our data demonstrate that the presynapse is particularly vulnerable to GLT-1 dysfunction and may have implications for presynaptic impairments in a variety of brain diseases.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/metabolismo , Doença de Alzheimer/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo
2.
Neuropharmacology ; 211: 109043, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341790

RESUMO

Chronic stress is a significant risk factor for depression onset. The effects of chronic stress can be studied preclinically using a corticosterone (CORT)-administration paradigm that results in a phenotype of depressive-like behavior associated with neurochemical abnormalities in brain regions like the hippocampus. We have recently shown that intrahippocampal infusions of Reelin have a fast effect in normalizing CORT-induced behavioral and neurochemical alterations. Reelin is also expressed in multiple peripheral systems and is found in blood plasma which prompted us to investigate whether peripheral intravenous (i.v.) Reelin injections could also result in antidepressant (ATD)-like actions. Repeated i.v. injections of Reelin were effective in rescuing the CORT-induced increases in forced-swim-test immobility in male and female rats, decreases in Reelin-immunopositive cells in the dentate gyrus subgranular zone, the expression of hippocampal GABAAß2/3, GluA1, and GluN2B receptors, and serotonin transporter (SERT) membrane protein clustering (MPC) in blood lymphocytes. However, Reelin had only a partial effect on the number and maturation rate of dentate gyrus newborn cells. CORT and Reelin did not affect open field test behavior. After evaluating the effects of multiple Reelin injections, we demonstrated that a single Reelin injection administered at the end of CORT treatment could rescue in 24 h the behavioral (forced-swim-test and object-in-place test), as well as SERT MPC and neurochemical effects of CORT. These findings show that i.v. injections of Reelin have fast ATD-like effects associated with the restoration of hippocampal neurochemical deficits. Although additional mechanistic and pharmacokinetic studies are necessary, our data open the possibility to develop Reelin-based therapeutics with putative fast-ATD activity.


Assuntos
Corticosterona , Proteína Reelina , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Comportamento Animal , Depressão/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo , Masculino , Ratos
3.
Behav Brain Res ; 408: 113291, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33836169

RESUMO

The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.


Assuntos
Anti-Inflamatórios/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Inibição Pré-Pulso/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Long-Evans , Estresse Psicológico
4.
Front Cell Neurosci ; 15: 661412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841104

RESUMO

Pharmacological upregulation of glutamate transporter-1 (GLT-1), commonly achieved using the beta-lactam antibiotic ceftriaxone, represents a promising therapeutic strategy to accelerate glutamate uptake and prevent excitotoxic damage in neurological conditions. While excitotoxicity is indeed implicated in numerous brain diseases, it is typically restricted to select vulnerable brain regions, particularly in early disease stages. In healthy brain tissue, the speed of glutamate uptake is not constant and rather varies in both an activity- and region-dependent manner. Despite the widespread use of ceftriaxone in disease models, very little is known about how such treatments impact functional measures of glutamate uptake in healthy tissue, and whether GLT-1 upregulation can mask the naturally occurring activity-dependent and regional heterogeneities in uptake. Here, we used two different compounds, ceftriaxone and LDN/OSU-0212320 (LDN), to upregulate GLT-1 in healthy wild-type mice. We then used real-time imaging of the glutamate biosensor iGluSnFR to investigate functional consequences of GLT-1 upregulation on activity- and regional-dependent variations in glutamate uptake capacity. We found that while both ceftriaxone and LDN increased GLT-1 expression in multiple brain regions, they did not prevent activity-dependent slowing of glutamate clearance nor did they speed basal clearance rates, even in areas characterized by slow uptake (e.g., striatum). Unexpectedly, ceftriaxone but not LDN decreased glutamate release in the cortex, suggesting that ceftriaxone may alter release properties independent of its effects on GLT-1 expression. In sum, our data demonstrate the complexities of glutamate uptake by showing that GLT-1 expression does not necessarily translate to accelerated uptake. Furthermore, these data suggest that the mechanisms underlying activity- and regional-dependent differences in glutamate dynamics are independent of GLT-1 expression levels.

5.
J Neurosci Res ; 99(6): 1598-1617, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33618436

RESUMO

Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.


Assuntos
Química Encefálica , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Humanos
6.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32354757

RESUMO

Glutamate transporters, particularly glutamate transporter 1 (GLT-1), help to prevent the adverse effects associated with glutamate toxicity by rapidly clearing glutamate from the extracellular space. Since GLT-1 expression and/or function are reduced in many neurodegenerative diseases, upregulation of GLT-1 is a favorable approach to treat the symptoms of these diseases. Ceftriaxone, a ß-lactam antibiotic reported to increase GLT-1 expression, can exert neuroprotective effects in a variety of neurodegenerative diseases; however, many of these diseases do not exhibit uniform brain pathology. In contrast, as a drug that readily crosses the blood-brain barrier, ceftriaxone administration is likely to increase GLT-1 levels globally throughout the neuroaxis. In Huntington disease (HD), low GLT-1 expression is observed in the striatum in postmortem tissue and animal models. While ceftriaxone was reported to increase striatal GLT-1 and ameliorate the motor symptoms in a mouse model of HD, the extrastriatal effects of ceftriaxone in HD are unknown. Using electrophysiology and high-speed imaging of the glutamate biosensor iGluSnFR, we quantified real-time glutamate dynamics and synaptic plasticity in the hippocampus of the Q175FDN mouse model of HD, following intraperitoneal injections of either saline or ceftriaxone. We observed an activity-dependent increase in extracellular glutamate accumulation within the HD hippocampus, which was not the result of reduced GLT-1 expression. Surprisingly, ceftriaxone had little effect on glutamate clearance rates and negatively impacted synaptic plasticity. These data provide evidence for glutamate dysregulation in the HD hippocampus but also caution the use of ceftriaxone as a treatment for HD.


Assuntos
Ceftriaxona , Doença de Huntington , Animais , Ceftriaxona/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico , Hipocampo/metabolismo , Doença de Huntington/tratamento farmacológico , Camundongos
7.
Neuropsychopharmacology ; 45(10): 1707-1716, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31926481

RESUMO

The present report examines the effects of repeated or single intrahippocampal Reelin infusions on measures of depressive-like behavior, cognition, and hippocampal neurogenesis in the repeated-corticosterone (CORT) paradigm. Rats received subcutaneous injections of CORT for 3 weeks and Reelin was infused through an inserted canula in the left hippocampus on days 7, 14, and 21, or only on day 21 of CORT injections. CORT increased immobility in the forced-swim test and impaired object-location memory. Notably, these effects were reversed by both repeated and single-Reelin infusions. CORT decreased both the number and complexity of doublecortin-labeled maturing newborn neurons in the dentate gyrus subgranular zone, and a single-Reelin infusion increased the number but not complexity of newborn neurons, while repeated Reelin infusions restored both. Injection of the AMPA antagonist CNQX blocked the rescue of the behavioral phenotype by Reelin but did completely block the effects of Reelin on hippocampal neurogenesis. Reelin is able to rescue the deficits in AMPA, NMDA, GABAA receptors, mTOR and p-mTOR induced by CORT. These novel results demonstrate that a single intrahippocampal Reelin infusion into the dorsal hippocampus has fast-acting antidepressant-like effects, and that some of these effects may be at least partially independent of Reelin actions on hippocampal neurogenesis.


Assuntos
Corticosterona , Neurogênese , Animais , Antidepressivos/farmacologia , Corticosterona/farmacologia , Depressão/tratamento farmacológico , Proteína Duplacortina , Hipocampo , Neurônios , Ratos , Proteína Reelina
8.
Front Neurosci ; 13: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804748

RESUMO

Human and animal studies suggest an intriguing relationship between the immune system and the development of depression. Some peripherally produced cytokines, such as TNF-α, can cross the blood brain barrier and result in activation of brain microglia which produces additional TNF-α and fosters a cascade of events including decreases in markers of synaptic plasticity and increases in neurodegenerative events. This is exemplified by preclinical studies, which show that peripheral administration of pro-inflammatory cytokines can elicit depression-like behavior. Importantly, this depression-like behavior can be ameliorated by anti-cytokine therapies. Work in our laboratory suggests that TNF-α is particularly important for the development of a depressive phenotype and that TNF-α antagonists might have promise as novel antidepressant drugs. Future research should examine rates of inflammation at baseline in depressed patients and whether anti-inflammatory agents could be included as part of the treatment regimen for depressive disorders.

9.
Front Pharmacol ; 9: 1149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374301

RESUMO

Naïve depression patients show alterations in serotonin transporter (SERT) and serotonin 2A (5HT2A) receptor clustering in peripheral lymphocytes, and these alterations have been proposed as a biomarker of therapeutic efficacy in major depression. Repeated corticosterone (CORT) induces a consistent depression-like phenotype and has been widely used as an animal model to study neurobiological alterations underlying the depressive symptoms. In this experiment, we used the CORT paradigm to evaluate whether depression-like behavior is associated with similar changes in the pattern of SERT and 5HT2A membrane protein clustering as those observed in depression patients. We also analyzed the clustering of other proteins expressed in lipid rafts in lymphocytes. Rats received daily CORT or vehicle injections for 21 consecutive days. Afterward they underwent the forced swim test to evaluate depression-like behavior, and isolated lymphocytes were analyzed by immunocytochemistry coupled to image-analysis to study clustering parameters of the SERT, 5HT2A receptor, dopamine transporter (DAT), Beta2 adrenergic receptor (ß2AR), NMDA 2B receptor (NR2B), Pannexin 1 (Pnx1), and prion cellular protein (PrPc). Our results showed that CORT increases the size of protein clusters for all proteins with the exception of ß 2AR, which is decreased. CORT also increased the number of clusters for Pnx1 and PrPc only. Overall, these results indicate that alterations in SERT and 5HT2A protein clustering in naïve depression patients are paralleled by changes seen in an animal model of depression. The CORT paradigm may be a useful screen for examining additional proteins in lymphocytes as a preliminary step prior to their analysis as biomarkers of depression in human blood samples.

10.
Front Neurosci ; 12: 386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928190

RESUMO

Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.

11.
Front Pharmacol ; 9: 121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515447

RESUMO

Depression is a serious psychiatric disorder frequently comorbid with autoimmune disorders. Previous work in our lab has demonstrated that repeated corticosterone (CORT) injections in rats reliably increase depressive-like behavior, impair hippocampal-dependent memory, reduce the number and complexity of adult-generated neurons in the dentate gyrus, decrease hippocampal reelin expression, and alter markers of GABAergic function. We hypothesized that peripheral injections of the TNF-α inhibitor etanercept could exert antidepressant effects through a restoration of many of these neurobiological changes. To test this hypothesis, we examined the effect of repeated CORT injections and concurrent injections of etanercept on measures of object-location and object-in-place memory, forced-swim test behavior, hippocampal neurogenesis, and reelin and GABA ß2/3 immunohistochemistry. CORT increased immobility behavior in the forced swim test and impaired both object-location and object-in-place memory, and these effects were reversed by etanercept. CORT also decreased both the number and complexity of adult-generated neurons, but etanercept restored these measures back to control levels. Finally, CORT decreased the number of reelin and GABA ß2/3-ir cells within the subgranular zone of the dentate gyrus, and etanercept restored these to control levels. These novel results demonstrate that peripheral etanercept has antidepressant effects that are accompanied by a restoration of cognitive function, hippocampal neurogenesis, and GABAergic plasticity, and suggest that a normalization of reelin expression in the dentate gyrus could be a key component underlying these novel antidepressant effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...