Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 65(7): 1189-1203, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33772634

RESUMO

Measured meteorological time series are frequently used to obtain information about climate dynamics. We use time series analysis and nonlinear system identification methods in order to assess outdoor-environment bioclimatic conditions starting from the analysis of long historical meteorological data records. We investigate and model the stochastic and deterministic properties of 117 years (1891-2007) of monthly measurements of air temperature, precipitation and sunshine duration by separating their slow and fast components of the dynamics. In particular, we reconstruct the trend behaviour at long terms by modelling its dynamics via a phase space dynamical systems approach. The long-term reconstruction method reveals that an underlying dynamical system would drive the trend behaviour of the meteorological variables and in turn of the calculated Universal Thermal Climatic Index (UTCI), as representative of bioclimatic conditions. At longer terms, the system would slowly be attracted to a limit cycle characterized by 50-60 years cycle fluctuations that is reminiscent of the Atlantic Multidecadal Oscillation (AMO). Because of lack of information about long historical wind speed data we performed a sensitivity analysis of the UTCI to three constant wind speed scenarios (i.e. 0.5, 1 and 5 m/s). This methodology may be transferred to model bioclimatic conditions of nearby regions lacking of measured data but experiencing similar climatic conditions.


Assuntos
Sensação Térmica , Vento , Polônia , Temperatura
2.
Sci Total Environ ; 747: 141192, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777497

RESUMO

The paper examines the variability of long-wave radiation fluxes in two contrasting types of urban active surfaces - grassy surface and surface without plants (bare soil) in Wroclaw (Poland) within a 12-year period (August 2007-July 2019). The study used net radiation and heat balance formulas to calculate the share of individual radiation fluxes in these balances, and then utilized the Stefan-Boltzmann formula to calculate the effective temperatures of researched surfaces. The analysis showed the temporal variability of these fluxes against the background of weather and climatic conditions and in relation to the variability of short-wave radiation fluxes. The role of long-wave radiation fluxes in forming net radiation was examined in detail to show the buffering role of vegetation surfaces regarding the variability of solar radiation fluxes and their heat effects. The mean monthly values of outgoing long-wave radiation fluxes change from 309.0 W·m-2 for bare soil, 309.8 W·m-2 for grassy surface, and 288.8 W·m-2 for downward atmospheric radiation to respectively 435.8, 425.0 and 369.4 W·m-2 in July. The coefficient of variability for long-wave radiation daily fluxes are approximately one order of magnitude lower than for the short-wave radiation. The differences between values of long-wave radiation fluxes for bare soil and grassy surfaces vary from slight negative values in winter to relatively sizable positive values during the vegetation period (March-October). The weakening of the buffering effect for grassy surface and how air temperature then changes considerably compared to the effective temperature of the active surfaces were explained using the dry summer period of August 2015 as example. The obtained results are important, as they provide empirical arguments for urban planning to extend plant areas' share in big cities as well as to introduce there a friendly environmental system of irrigation in these areas using renewable solar energy.


Assuntos
Poaceae , Solo , Cidades , Polônia , Estações do Ano , Temperatura , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...