Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11106, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750130

RESUMO

Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.

2.
J Phys Chem Lett ; 15(15): 4006-4014, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38574347

RESUMO

One-dimensional transition metal materials are promising supports for precious metals used in energy production processes. Due to their electrochemical properties, 3d-group metals (such as Ni, Co, and Fe) can actively interact with catalysts by a strong metal-support interaction. This study shows that changing the Ni:Co ratio makes it possible to modulate the structure of the catalyst supports, which, in turn, provides a tool for designing their electrical and electrochemical properties. For example, Ni1-Co9 shows the highest electrical conductivity (5.8-10-4 S/cm) among all of the materials examined. On the contrary, the Pd@Ni7-Co3 system presents the highest mass activity (>2000 mA mg-1) at 0.7 V, exceeding by several times that of commercial Pt/C (>300 mA mg-1) at the same potential. Our study opens the gateway for applications of bimetallic transition metal nanowires in catalytic conversion and energy production processes.

3.
Chem Asian J ; 19(7): e202400006, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38433098

RESUMO

Tributyl citrate (TBC) plays a crucial role as a plasticizer, enhancing the flexibility of polymers such as polyvinyl chloride. Its biodegradability and non-toxic nature contribute to eco-friendly appeal, making it a preferred additive in diverse industries, including food packaging, medical devices, toys, and consumer goods. Herein, a method for the synthesis of TBC using inexpensive Brønsted acidic protic ionic liquids (ILs) in a two-phase reaction system is presented. The esterification process is carried out with high yield (>99 %), selectivity (up to 98 %) and short reaction time of 2 h. The catalyst in the form of IL shows excellent performance and stability, desirable for industrial applications.

4.
Adv Mater ; 36(23): e2313023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411362

RESUMO

Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.

5.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232584

RESUMO

Increasing energy demands exacerbated by energy shortages have highlighted the urgency of research on renewable energy technologies. Carbon materials that can be employed as advanced electrodes and catalysts can increase the accessibility of efficient and economical energy conversion and storage solutions based on electrocatalysis. In particular, carbon materials derived from biomass are promising candidates to replace precious-metal-based catalysts, owing to their low cost, anti-corrosion properties, electrochemical durability, and sustainability. For catalytic applications, the rational design and engineering of functional carbon materials in terms of their structure, morphology, and heteroatom doping are crucial. Phytic acid derived from natural, abundant, and renewable resources represents a versatile carbon precursor and modifier that can be introduced to tune the aforementioned properties. This review discusses synthetic strategies for preparing functional carbon materials using phytic acid and explores the influence of this precursor on the resulting materials' physicochemical characteristics. We also summarize recent strategies that have been applied to improve the oxygen reduction performance of porous carbon materials using phytic acid, thereby offering guidance for the future design of functional, sustainable carbon materials with enhanced catalytic properties.


Assuntos
Carbono , Ácido Fítico , Biomassa , Carbono/química , Catálise , Oxigênio/química
6.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638766

RESUMO

Carbohydrate moieties were combined with various cross-linkable anions (thiocyanate [SCN], tetracyanoborate [TCB], tricyanomethanide [TCM], and dicyanamide [DCA]) and investigated as precursors for the synthesis of nitrogen-doped and nitrogen-/sulfur-co-doped carbons. The influence of the molecular structures of the precursors on their thermophysical properties and the properties of the derived carbon materials was elucidated and compared to petroleum-derived analogs. A carbohydrate-based ionic liquid featuring an [SCN] anion yielded more carbon residues upon carbonization than its 1-ethyl-3-methylimidazolium analog, and the resulting dual-doping of the derived carbon material translated to enhanced catalytic activity in the oxygen reduction reaction.


Assuntos
Carbono/química , Líquidos Iônicos/química , Ânions/química
7.
Molecules ; 25(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698359

RESUMO

Carbohydrate-derived ionic liquids have been explored as bio-alternatives to conventional ionic liquids for over a decade. Since their discovery, significant progress has been made regarding synthetic methods, understanding their environmental effect, and developing perspectives on their potential applications. This review discusses the relationships between the structural properties of carbohydrate ionic liquids and their thermal, toxicological, and biodegradability characteristics in terms of guiding future designs of sugar-rich systems for targeted applications. The synthetic strategies related to carbohydrate-based ionic liquids, the most recent relevant advances, and several perspectives for possible applications spanning catalysis, biomedicine, ecology, biomass, and energy conversion are presented herein.


Assuntos
Carboidratos/química , Líquidos Iônicos/química , Energia Renovável , Biodegradação Ambiental , Condutividade Elétrica , Líquidos Iônicos/síntese química , Líquidos Iônicos/toxicidade , Sais/síntese química , Sais/química
8.
RSC Adv ; 10(31): 18355-18359, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35517191

RESUMO

The growing interest in the application of ionic liquids (ILs) with simultaneous sustainability draws attention to their environmental impact in general and their biodegradability in particular. Considering this, we designed a series of novel bio-ionic liquids based on natural, abundant compounds: a carbohydrate [Carb], as the cation, and amino acids [AA], as the anions; these ILs can serve as viable alternatives to the well-known and utile cholinium AAILs. Several [Carb][AA] ILs were characterized by 1H and 13C NMR, mass spectrometry, thermogravimetry (TGA) and differential scanning calorimetry (DSC). The biodegradability properties of the [Carb][AA] ILs were elucidated as well and showed biodegradation readily occurred, decomposing within 5-6 days. These novel materials were successfully utilized as catalysts for the Knoevenagel condensation reaction, where conversion values of 67-94% were achieved under exceptionally mild conditions using water as the solvent and reaction times as short as 15 minutes. These sugar based ILs were easily separated and recycled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...