Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948472

RESUMO

Asinibacterium sp. strains OR43 and OR53 belong to the phylum Bacteroidetes and were isolated from subsurface sediments in Oak Ridge, TN. Both strains grow at elevated levels of heavy metals. Here, we present the closed genome sequence of Asinibacterium sp. strain OR53 and the draft genome sequence of Asinibacterium sp. strain OR43.

2.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26676055

RESUMO

In the environment, microorganisms are living in diverse communities, which are impacted by the prevailing environmental conditions. Here, we present a study investigating the effect of low pH and elevated uranium concentration on the dynamics of an artificial microbial consortium. The members (Caulobacter sp. OR37, Asinibacterium sp. OR53, Ralstonia sp. OR214 and Rhodanobacter sp. OR444) were isolated from a uranium contaminated and acidic subsurface sediment. In pure culture, Ralstonia sp. OR214 had the highest growth rate at neutral and low pH and only Caulobacter sp. OR37 and Asinibacterium sp. OR53 grew in the presence uranium. The four strains were mixed in equal ratios, incubated at neutral and low pH and in the presence uranium and transferred to fresh medium once per week for 30 weeks. After 30 weeks, Ralstonia sp. OR214 was dominant at low and neutral pH and Caulobacter sp. OR37 and Asinibacterium sp. OR53 were dominant in the presence of uranium. After 12 weeks, the cultures were also transferred to new conditions to access the response of the consortia to changing conditions. The transfers showed an irreversible effect of uranium, but not of low pH on the consortia. Overall, the strains initially tolerant to the respective conditions persisted over time in high abundances in the consortia.


Assuntos
Bacteroidetes/crescimento & desenvolvimento , Caulobacter/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Consórcios Microbianos/efeitos dos fármacos , Ralstonia/crescimento & desenvolvimento , Urânio/farmacologia , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Caulobacter/efeitos dos fármacos , Caulobacter/isolamento & purificação , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Ralstonia/efeitos dos fármacos , Ralstonia/isolamento & purificação , Tempo
3.
Genome Announc ; 1(3)2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23792748

RESUMO

Ralstonia sp. strain OR214 belongs to the class Betaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. A member of this genus has been described as a potential bioremediation agent. Strain OR214 is tolerant to various heavy metals, such as uranium, nickel, cobalt, and cadmium. We present its draft genome sequence here.

4.
Genome Announc ; 1(3)2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23792749

RESUMO

Caulobacter sp. strain OR37 belongs to the class Alphaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. Strain OR37 is noteworthy due to its tolerance to high concentrations of heavy metals, such as uranium, nickel, cobalt, and cadmium, and we present its draft genome sequence here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...