Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e26995, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560683

RESUMO

There have been many research reports on the reinforcement of small-sized square columns with a cross-section of 200mm-300mm using prestressed carbon fiber-reinforced polymer (CFRP) materials, while there are few studies on piers in bridge and tower columns in cable-stayed bridges with a cross-section of several meters or even tens of meters. The horizontal prestressed steel tendons in the anchorage zone of tower columns in cable-stayed bridge replaced by prestressed CFRP sheets can not only facilitate construction and maintenance, but also have good fatigue resistance. The prestressed CFRP plate is used to reinforce the large-sized tower columns by using a specific device to tension the CFRP plate wrapped around the surface of the members. The tensioning device and test pedestal based on WSGG (wave-shaped-gear-grip) anchor clamping of CFRP plate have been developed in this paper, and the CFRP plate circumferential tensioning tests on the pedestal have been conducted. The test results are as follows: (1) the developed device can achieve circumferential tensioning of single-layer CFRP plate to 0.5ftk of the material, reaching a tensile force of 60kN, and generate effective restraint pressure on a 2-m long composite compression component; (2)The calculation formula for the constraint pressure generated by the circumferential prestressed CFRP sheet on the component has been derived and verified, and the maximum error between the calculated value and the experimental value is within 5%; (3) When iron sheet serves as the interface medium between CFRP plate and compression components, the prestress loss of the CFRP plate tensioned at one end is about 84% and 58%-60% when tensioned at both ends. It can be seen that the effective prestress of the CFRP plate with iron sheet as the interface medium is relatively small. Meanwhile, based on the distribution of compressive stress in the components and the effective pre tension value of CFRP plate, it can be seen that two end tensioning is better than one end tensioning; (4) The tensile stress of CFRP plate along the member is a cubic function when the tension force is 60kN, so it is deduced that the constrained compressive stress generated by CFRP plate on the member is a quadratic function distribution.

2.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161011

RESUMO

Ceramsite particles are an important component of lightweight ceramsite concrete wall panels, and the density of the aggregate is much lower than the density of the slurry. It is generally accepted that there are inhomogeneities in the distribution of ceramsite particles in wall panels. Ceramsite concrete wallboard material is a research hotspot in the field of fabricated building materials at home and abroad; however, there is no effective way to quantify their inhomogeneity. Based on the application of image recognition technology in concrete homogeneity, a method to quantitatively evaluate the distribution of light aggregates in wall panels was developed. Three commercial lightweight vitrified concrete wall panels were cut into 324 cubes. The four cut surfaces of each specimen were photographed to analyze the proportion of ceramsite particle area, while the density, ultrasonic pulse velocity, and compressive strength of the specimens were tested. The results demonstrated that the image analysis method could effectively describe the homogeneity of the panels. The proportion of particle area of aggregate in the section of the cube had a strong correlation with the compressive strength, ultrasonic pulse velocity, and density, and there was an obvious linear relationship with the height of the plate where the cube was located. Based on this, the correlation equations of the proportion of particle area of aggregate, density, ultrasonic pulse velocity, compressive strength, and the height where the specimen was located were proposed. The quantitative parameters of the relevant properties of the wall panels were also obtained: the maximum difference between the proportion of particle area of the aggregate was 24%, the maximum difference between the density at the top and bottom of the wall panels was 115 kg/m3, and the maximum difference in the strength reached 5 MPa.

3.
Materials (Basel) ; 15(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161055

RESUMO

With the rapid development of urbanization, many new buildings are erected, and old ones are demolished and/or recycled. Thus, the reuse of building materials and improvements in reuse efficiency have become hot research topics. In recent years, scholars around the world have worked on improving recycle aggregates in concrete and broadening the scope of applications of recycled concrete. This paper reviews the findings of research on the effects of recycled fine aggregates (RFAs) on the permeability, drying shrinkage, carbonation, chloride ion penetration, acid resistance, and freeze-thaw resistance of concrete. The results show that the content of old mortar and the quality of recycled concrete are closely related to the durability of prepared RFA concrete. For example, the drying shrinkage value with a 100% RFA replacement rate is twice that of normal concrete, and the depth of carbonation increases by approximately 110%. Moreover, the durability of RFA concrete decreases as the RFA replacement rate and the water-cement ratio improve. Fortunately, the use of zeolite materials such as fly ash, silica fume, and meta kaolin as surface coatings for RFAs or as external admixtures for RFA concrete had a positive effect on durability. Furthermore, the proper mixing methods and/or recycled aggregates with optimized moisture content can further improve the durability of RFA concrete.

4.
Materials (Basel) ; 15(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161172

RESUMO

Expanded polystyrene (EPS) concrete is commonly used as the core material of commercial sandwich panels (CSPs). It is environmentally friendly and lightweight but has poor strength. Adding fibers can improve the microstructure of EPS concrete and reduce the weakening effect of EPS beads on the mechanical properties of concrete. An orthogonal experimental design (OED) was used in this paper to analyze the influence of length and content of polypropylene fiber (PF), glass fiber (GF), and carbon fiber (CF) on the physical and mechanical properties and micromorphology of EPS concrete. Among them, CFs have the most apparent impact on concrete and produce the most significant improvements in all properties. According to the requirements of the flexural performance of CSPs, the splitting tensile strength was taken as the optimization index, and the predicted optimal combination (OC) of EPS concrete with fibers was selected. The variations in the material properties, mechanical properties, and microstructure with age were analyzed. The results show that with increasing age, the dry density, compressive strength, and splitting tensile strength of concrete are markedly improved relative to those of the CSP core material and the control case (CC), and even the degree of hydration is improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...