Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401347, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716685

RESUMO

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

2.
ChemSusChem ; 16(23): e202300861, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37578808

RESUMO

Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.

3.
Angew Chem Int Ed Engl ; 62(3): e202216062, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36412226

RESUMO

A fundamental understanding of the nature of nuclearity effects is important for the rational design of superior sub-nanocatalysts with low nuclearity, but remains a long-standing challenge. Using atomic layer deposition, we precisely synthesized Fe sub-nanocatalysts with tunable nuclearity (Fe1 -Fe4 ) anchored on N,O-co-doped carbon nanorods (NOC). The electronic properties and spin configuration of the Fe sub-nanocatalysts were nuclearity dependent and dominated the H2 O2 activation modes and adsorption strength of active O species on Fe sites toward C-H oxidation. The Fe1 -NOC single atom catalyst exhibits state-of-the-art activity for benzene oxidation to phenol, which is ascribed to its unique coordination environment (Fe1 N2 O3 ) and medium spin state (t2g 4 eg 1 ); turnover frequencies of 407 h-1 at 25 °C and 1869 h-1 at 60 °C were obtained, which is 3.4, 5.7, and 13.6 times higher than those of Fe dimer, trimer, and tetramer catalysts, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...