Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 870: 161957, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736392

RESUMO

Climate change significantly influenced the water quality of lakes in recent decades. This study investigated the effects of climate change on the water quality of Baiyangdian Lake (China) in the past 30 years (1991-2020) using correlation analysis, regression analysis, and the generalized additive model (GAM). The results show that water quality grade, chemical oxygen demand (COD), total phosphorus (TP) concentrations, and annual average and minimum air temperatures of the lake showed significant differences (p < 0.05) in the one-way ANOVA during the studied period. The concentration of dissolved oxygen (DO) and TP, annual average and minimum air temperatures, and annual precipitation decreased, while the COD and total nitrogen (TN) concentration, annual maximum temperature, and monthly maximum precipitation increased. The annual average and minimum air temperature affected all water quality variables and explained 12.3 %-54.5 % of variation deviation in correlation and GAM analyses, indicating that the changes of air temperature influenced the water temperature, which then affected the biochemical reaction rates leading to changes in water quality. The precipitation factors explained 10.5 % (TN) to 54.8 % (TP) of variation deviation, implying that the increase in precipitation improved water quality by diluting the COD concentration. However, excessive precipitation also accelerated the endogenous release of phosphorus in sediments by increasing the TP concentration. Additionally, extreme climate factors correlated with some water quality variables and explained 57.7 %-95.9 % of the total variances in correlation and regression analyses, suggesting that the extreme temperatures changed the nitrogen and DO concentration to aggravate lake pollution. However, the extreme precipitation purified the water through dilution. This study will facilitate to understand the impacts of climate change on water quality and find appropriate adaptation measures for ecosystem management of shallow lakes.

2.
Environ Pollut ; 303: 119118, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278586

RESUMO

Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dn), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dn in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m-2 d-1, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m-2 d-1 in winter, spring and summer respectively. There were no statistical differences in Dn between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dn rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO3--N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dn. The correlation with NO3--N concentrations suggests that it may be a limited factor for Dn. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.


Assuntos
Desnitrificação , Nitratos , Monitoramento Ambiental , Sedimentos Geológicos , Nitratos/análise , Nitrogênio/análise
3.
Environ Pollut ; 245: 1058-1070, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30682740

RESUMO

Using multivariate statistical analysis, the study evaluated anthropogenic sources of river water contamination and their relationships with river water quality in the Haicheng River basin near to the Liaodong Bay in Northeast China. The results showed that nitrogen (N) and phosphorous (P) were identified as the main pollutants in the river water by factor analysis. Human population and elevational gradient were all significantly correlated with N, P, and other water quality variables in correlation analysis and explained chemical oxygen demand (COD), N, and P variables from 23.9% (TN) to 53.1% (NH3+-N) of the total variances in regression analysis, indicating that population and its distribution were all responsible for river contaminations, especially for COD, N, and P contaminations. The excessive applications of fertilizers and pesticides were all positively correlated with nitrogen variables and nitrogen pollution factor in correlation analysis, suggesting that agricultural activities were contributed to the river nitrogen pollution. Due to inadequate or lack wastewater treatment facilities, huge amounts of domestic sewage and industrial effluents were released into the river, becoming the predominant anthropogenic sources for the river water deterioration of COD, N, and P. Multivariate statistical analysis provided useful tools to correlate sources of contamination with water quality data. This approach will provide a better management for river pollution control in a human-driven river ecosystem.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Análise da Demanda Biológica de Oxigênio , China , Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Fertilizantes/análise , Humanos , Análise Multivariada , Nitrogênio/análise , Praguicidas/análise , Fósforo/análise , Esgotos/análise
4.
Huan Jing Ke Xue ; 39(12): 5440-5450, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628387

RESUMO

The hydrology of rivers recharged with reclaimed water is an important factor controlling its aquatic environment and biochemical processes, which change during the wet season. To understand the impacts of precipitation on hydrological conditions, water samples were collected from seven sites in three periods (before the wet season and during and after the maximum precipitation in July 2017, with 3.3 return periods) throughout a reclaimed water intake area of the Chaobai River in the Shunyi District, Beijing. The hydrogen-oxygen isotope characteristics and chloride content were measured. The results show that the hydrogen and oxygen isotopes of precipitation are mainly affected by the amount of the effect. The minor variation in the later period is due to changes in the sources of moisture. Within three days after precipitation, the slope runoff continues and the fraction of each section varies greatly. The reclaimed water reaches the downstream section through the preferred pathway. The water component ratio of the slope runoff increases from 2% to 85.6% in the direction of the flow, while the reclaimed water ratio decreases from 90% to 67%. The stream remains effluent from sections SY01 to SY05 that are recharged by the slope runoff, reclaimed water, and in-site river water, while the sections SY06 to SY07 are mainly recharged by the slope runoff and in-site river water within three days after the precipitation (the stream effluent is unremarkable).

5.
Environ Sci Pollut Res Int ; 25(7): 6720-6728, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29260479

RESUMO

The stable isotopic compositions (δD and δ18O) of precipitation were firstly investigated from May 2012 to November 2013 in the Jinshui River basin of the South Qinling Mts., China. The local meteoric water lines (LMWLs) based on all daily and monthly precipitation-weighted data were defined as δD = 8.32 δ18O + 12.57 (r 2 = 0.957, n = 47, p < 0.001) and δD = 8.11 δ18O + 11.59 (r 2 = 0.946, n = 15, p < 0.001), respectively. The fluctuations of daily deuterium excess (d-excess) values indicated the mixing moisture sources from the monsoon circulation during the rainy season and the local moisture recycling during the dry season in the river basin. The monthly precipitation-weighted values of d-excess confirmed the moisture sources and determined the temporal variations in moisture supply for the river basin. The precipitation amount and temperature effects were found to be significant, with amount gradient of - 0.06‰/mm for daily δ18O variability and temperature gradients of - 1.51 and - 0.44‰/°C for daily δD and d-excess variability, respectively. However, the isotopes of local precipitation during precipitation events were almost unaffected by relative humidity due to overwhelming recycled moisture at relative humidity > 85%. The results of this research provide an effective method for tracing the local water hydrologic cycle in the South Qinling Mts., China.


Assuntos
Deutério/análise , Isótopos de Oxigênio/análise , Chuva/química , Neve/química , China , Monitoramento Ambiental , Florestas
6.
Mar Pollut Bull ; 114(1): 547-554, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614567

RESUMO

Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Rios/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Adsorção , China , Resíduos Industriais/análise , Nitrogênio/química , Oxigênio/análise , Estações do Ano , Solubilidade , Análise Espaço-Temporal , Oligoelementos/química
7.
Sci Total Environ ; 553: 232-242, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26925734

RESUMO

This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Poluentes Químicos da Água/análise , Agricultura/estatística & dados numéricos , China , Fertilizantes , Rios , Urbanização/tendências
8.
Water Res ; 93: 91-97, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26900970

RESUMO

The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p < 0.01) suggesting that it is suitable for differentiating sources. Dissolved Sr is also positively correlated with most ions and a range of physicochemical parameters (p < 0.01 and p < 0.05 respectively) in water samples including Ca(2+), Mg(2+), EC, and TDS (p < 0.001) indicating their similarities in the drivers of biogeochemical processes and common origins. The correlations between Sr isotopes and Ca/Na, Ca/K, and 1000/Sr ratios suggest that three end-members of atmospheric inputs, carbonate and silicate weathering control the Sr water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment.


Assuntos
Florestas , Rios/química , Isótopos de Estrôncio/análise , Estrôncio/análise , Altitude , Atmosfera/química , Cálcio/análise , China , Monitoramento Ambiental/métodos , Água Doce/química , Geografia , Magnésio/análise , Chuva/química , Solo/química
9.
Sci Total Environ ; 538: 327-40, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26312407

RESUMO

Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of groundwater obtained from this study can be beneficial to improving groundwater management for sustainable development in the rapidly industrialized areas.


Assuntos
Monitoramento Ambiental , Fenômenos Geológicos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Álcalis , Carbonato de Cálcio , China , Lagos , Tempo (Meteorologia)
10.
Environ Sci Pollut Res Int ; 22(23): 18750-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26199006

RESUMO

Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.


Assuntos
Magnoliopsida/metabolismo , Metais Pesados/análise , Lagoas/química , Poluentes Químicos da Água/análise , China , Sedimentos Geológicos/química , Potamogetonaceae/metabolismo , Clima Tropical
11.
Environ Sci Pollut Res Int ; 22(18): 14248-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25971808

RESUMO

Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.


Assuntos
Monitoramento Ambiental , Rios/química , Oligoelementos/análise , Oligoelementos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Agricultura , Análise de Variância , Fenômenos Químicos , China , Oxigênio/química , Análise de Componente Principal , Solo/química
12.
Environ Monit Assess ; 186(6): 3619-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24477615

RESUMO

Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p ≤ 0.05) and spatial (p < 0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , China , Análise Fatorial , Análise Multivariada , Estações do Ano , Qualidade da Água
13.
J Environ Sci (China) ; 25(9): 1754-63, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24520717

RESUMO

Reclaimed water was successfully used to recover the dry Chaobai River in Northern China, but groundwater may be polluted. To ensure groundwater protection, it is therefore critical to identify the governing factors of groundwater chemistry. Samples of reclaimed water, river and groundwater were collected monthly at Chaobai River from January to September in 2010. Fifteen water parameters were analyzed. Two kinds of reclaimed water were different in type (Na-Ca-Mg-Cl-HCO3 or Na-Ca-Cl-HCO3) and concentration of nitrogen. The ionic concentration and type in river were similar to reclaimed water. Some shallow wells near the river bed had the same type (Na-Ca-Mg-Cl-HCO3) and high concentration as reclaimed water, but others were consistent with the deep wells (Ca-Mg-HCO3). Using cluster analysis, the 9 months were divided into two periods (dry and wet seasons), and all samples were grouped into several spatial clusters, indicating different controlling mechanisms. Principal component analysis and conventional ionic plots showed that calcium, magnesium and bicarbonate were controlled by water-rock interaction in all deep and some shallow wells. This included the dissolution of calcite and carbonate weathering. Sodium, potassium, chloride and sulfate in river and some shallow wells recharged by river were governed by evaporation crystallization and mixing of reclaimed water. But groundwater chemistry was not controlled by precipitation. During the infiltration of reclaimed water, cation exchange took place between (sodium, potassium) and (calcium, magnesium). Nitrification and denitrification both happened in most shallow groundwater, but only denitrification in deep groundwater.


Assuntos
Água Doce/química , Água Subterrânea/química , China , Análise por Conglomerados , Análise Multivariada , Análise de Componente Principal
14.
Environ Sci Pollut Res Int ; 19(3): 858-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21948141

RESUMO

INTRODUCTION: Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. DISCUSSION: Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.


Assuntos
Desenvolvimento Econômico , Eutrofização , Lagos/química , Qualidade da Água , Agricultura/economia , Altitude , China , Clorofila/análise , Clorofila A , Humanos , Concentração de Íons de Hidrogênio , Análise de Regressão , Estações do Ano , Fatores Socioeconômicos , Urbanização , Eliminação de Resíduos Líquidos/economia
15.
Sci Total Environ ; 409(18): 3394-402, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21658748

RESUMO

A survey was conducted in the Haicheng River near Liaodong Bay to analyze the characteristics and sources of the in-stream nitrogen pollution throughout the year 2010. The results indicated that the total nitrogen (TN) concentrations in the river water all exceeded the GB3838-2002 standard for Class V guideline of 2.0 mg/l at all sampling sites during the sampling seasons. Ammoniacal nitrogen (NH3-N) dominated TN during the spring season, while nitrate nitrogen (NO3-N) dominated during the summer and autumn seasons. Different forms of nitrogen had significant seasonal variations (p<0.01 or p<0.05). Only NH3-N and NO3-N displayed distinct spatial differences at p<0.05 and p<0.001, respectively. Most forms of nitrogen were interrelated with physicochemical parameters during different seasons, displaying nitrification and denitrification processes that occurred in the river rather than seasonal biological demand. Based on the nitrogen parameters, the 30 sampling sites were divided into three clusters, by which the pollution sources from chemical nitrogen fertilizers, animal wastes, domestic sewage, and industrial wastewater were identified. Generally, the Haicheng River basin provided about 700tons of the annual TN flux, contributing to the eutrophication of the Liaodong Bay and Bohai Sea.


Assuntos
Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , China , Monitoramento Ambiental
16.
Ecotoxicol Environ Saf ; 73(5): 907-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20047760

RESUMO

Water pollution has become a growing threat to human society and natural ecosystems in recent decades, increasing the need to better understand the spatial and temporal variabilities of pollutants within aquatic systems. This study sampled water quality at 12 sampling sites from October 2006 to August 2008 in the Jinshui River of the South Qinling Mts., China. Multivariate statistical techniques and gridding methods were used to investigate the temporal and spatial variations of water quality and identify the main pollution factors and sources. Two-way analysis of variance (ANOVA) showed that 25 studied water quality variables had significant temporal differences (p<0.01) and spatial variability (p<0.01). Using cluster analysis, the 12 sampling sites were classified into three pollution level groups (no pollution, moderate pollution, and high pollution) based on similarity of water quality variables. Factor analysis determined that 80.4% of the total variance was explained by five factors, that is, salinity, trophicity, organic pollution, oxide-related process, and erosion. The gridding methods illustrated that water quality progressively deteriorated from headwater to downstream areas. The analytical results suggested that the water pollution primarily resulted from domestic wastewater and agricultural runoff, and provided critical information for water resource conservation in mountainous watersheds of the South Qinling Mts., China.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes da Água/análise , China , Sedimentos Geológicos/química , Tempo , Poluição da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...