Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 948: 174793, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019266

RESUMO

The present study explores the intricacies of CALIPSO Level 3 optimized Aerosol Optical Depth (AOD) and Dust Aerosol Optical Depth (DAOD) products. Hence, the study focused on regions in the Middle East and North Africa (MENA) across different seasons from January 2007 to December 2020. The study utilizes a refined 1° × 1° grid resolution to analyze horizontal distribution patterns, seasonal variations, and the interplay of various aerosol constituents. The Middle East (ME) stands out with intensified AOD during transitional periods, and the Saharan-Sahel Dust (SSD) belt exhibits higher DAOD during specific seasons. Regions with significant industrialization and human activities exhibit high non-dust AOD values, while major dust sources like the SSD and the Arabian Desert showed high DAOD values in the spring and summer seasons. The study reveals seasonal variations in AOD and DAOD, with different regions showing distinct characteristics influenced by topographic and environmental factors. Observational evidence on the vertical distribution of dust layers is crucial for modeling studies to assess the impact of airborne dust particles on radiation and clouds. However, there are challenges in assimilating dust into atmospheric models due to limited ground measurements near dust sources. Further, the statistical metrics highlight regional and seasonal variations in DAOD, Dust Center of Mass, and Dust Top Height. The analysis extends to particle depolarization ratio, aerosol classification, spatial deviation in dust composition, AOD, and cloud properties (e.g., cloud optical thickness and cloud fraction). This has been influenced by several factors such as atmospheric circulation patterns, temperature, humidity, and land cover changes. Trends in AOD and DAOD over timescale indicate regional variations in aerosol concentrations. The study offers valuable insights into the complex atmospheric phenomena shaping the examined regions over the 13 years.

2.
Appl Opt ; 63(9): 2121-2131, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568563

RESUMO

An integrated path differential absorption (IPDA) lidar can accurately measure regional C O 2 weighted column average concentrations (X C O 2), which are crucial for understanding the carbon cycle in climate change studies. To verify the performance and data inversion methods of space-borne IPDA lidar, in July 2021, we conducted an airborne lidar validation experiment in Dunhuang, Gansu Province, China. An aircraft was equipped with a lidar system developed to measure X C O 2 and an in situ greenhouse gas analyzer (GGA). To minimize measurement errors, energy monitoring was optimized. The system bias error of the DAOD was determined by changing the laser output mode from the off/on to the on/on mode. The X C O 2 inversion results obtained through comparing the schemes of averaging signals before "log (logarithm)" and averaging after "log" indicate that the former performs better. The IPDA lidar measured X C O 2 over the validation site at 405.57 ppm, and both the IPDA lidar and GGA measured sudden changes in the C O 2 concentration. The assimilation data showed a similar trend according to the altitude to the data measured by the in situ instrument. A comparison of the mean X C O 2 derived from the GGA results and assimilation data with the IPDA lidar measurements showed biases of 0.80 and 1.12 ppm, respectively.

3.
Opt Express ; 28(17): 24471-24488, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32906988

RESUMO

Compared with ground-based lidar, airborne lidar has a wider observation area, which is useful for studying aerosol distribution and transportation. A dual-wavelength high spectral resolution Lidar (HSRL) was developed for the validation and calibration of an upcoming satellite payload. The HSRL was installed on an airplane, and field campaigns were conducted in Qinhuangdao, China. Meanwhile, four observation sites were established at different locations on the ground to verify the results of the airborne lidar. This article compares the HSRL measurements with those from ground-based micro-pulse lidar (MPL), Mie-scattering lidar, sun photometer, and spaceborne cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO), and Moderate Resolution Imaging Spectroradiometer (MODIS). The stability and reliability of the HSRL system were fully verified. The flight area covered several surface types, including ocean, town, mountain, and forest, which strongly affect the AOD above them. The boundary layer AOD was analyzed in different regions, based on the impact of human activities. The results demonstrated that the AOD in urban area was the largest, and smallest in marine areas, a result ascribed to the influence of industrial activities.

4.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295176

RESUMO

Developments in mid-infrared Differential Absorption Lidar (DIAL), for gas remote sensing, have received a significant amount of research in recent years. In this paper, a high repetition rate tunable mid-infrared DIAL, mounted on a mobile platform, has been built for long range remote detection of gas plumes. The lidar uses a solid-state tunable optical parametric oscillator laser, which can emit laser pulse with repetition rate of 500 Hz and between the band from 2.5 µm to 4 µm. A monitoring channel has been used to record the laser energy in real-time and correct signals. Convolution correction technology has also been incorporated to choose the laser wavelengths. Taking NO2 and SO2 as examples, lidar system calibration experiment and open field observation experiment have been carried out. The observation results show that the minimum detection sensitivity of NO2 and SO2 can reach 0.07 mg/m3, and 0.31 mg/m3, respectively. The effective temporal resolution can reach second level for the high repetition rate of the laser, which demonstrates that the system can be used for the real-time remote sensing of atmospheric pollution gas.

5.
Appl Opt ; 58(36): 9777-9785, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873620

RESUMO

The phase state information of cloud water is important for the airborne measurement of the microphysical properties of a cloud. A cloud particle detection system based on polarization detection, which can be used to detect the size and phase state of cloud particles for particle diameters of less than 50 µm, was developed by detecting the energy of the forward scattering and the depolarization of backscattered light. The sensitive area was calculated through the width and depth of the field of view of the laser beam. The system was calibrated using standard particles. The response curve of the system to the cloud particles was obtained by calculating the relationship between the standard particles and the cloud droplets. Finally, the liquid droplets and typical nonspherical particles were measured, and the results compared with a simulation. The comparison results indicated that the system could detect spherical and nonspherical cloud particles and could discriminate between nonspherical cloud particles and liquid droplets.

6.
Opt Lett ; 41(7): 1582-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192292

RESUMO

A waveguide-coupled surface phonon resonance (SPhR) sensor with super-resolution based on Fano resonance (FR) by using a multilayer system within the Kretschmann configuration in the mid-infrared wavelength region is proposed. Due to the coherent interference of the waveguide and the surface phonon polariton modes, the calculated reflectivity spectrum possesses sharp asymmetric FR dips. An ultra-small linewidth is formed because of the Fano coupling, and the physical features contribute to a highly efficient nano-sensor for refractive index sensing. The bulk and surface sensitivity by intensities are greatly enhanced relative to those of conventional SPhR sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...