Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Small ; 18(15): e2104472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187776

RESUMO

Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.

2.
ACS Appl Mater Interfaces ; 9(50): 43799-43806, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29188715

RESUMO

A novel three-dimensional transition metal dichalcogenide (TMD) structure consisting of seamless hollow nanoflakes on two-dimensional basal layers was synthesized by a one-step chemical vapor deposition method. Here, we demonstrate that the as-grown nanoflakes are formed on an organic promoter layer which served as a positive template and are swollen at the grain boundaries by the bubbling effect. TMD nanosheets with hollow nanoflakes are successfully applied as chemical sensors, and it was found that their gas adsorption property is strongly related to the internal strain gradient resulting from the variation in the lattice parameter. This result is consistent with the theoretical prediction in previous studies. Our chemical vapor deposition-based approach is an efficient way to generate TMD-based nanostructures over a large surface area for various practical applications such as chemical sensors.

3.
Nanomaterials (Basel) ; 7(10)2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28991155

RESUMO

Recently, composite-type nanogenerators (NGs) formed from piezoelectric nanostructures and multi-walled carbon nanotubes (CNTs), have become one of the excellent candidates for future energy harvesting because of their ability to apply the excellent electrical and mechanical properties of CNTs. However, the synthesis of NG devices with a high proportion of piezoelectric materials and a low polymer content, such as of polydimethylsiloxane (PDMS), continues to be problematic. In this work, high-piezoelectric-material-content flexible films produced from Pb(Zr,Ti)O3 (PZT)-atomically-interconnected CNTs and polytetrafluoroethylene (PTFE) are presented. Various physical and chemical characterization techniques are employed to examine the morphology and structure of the materials. The direct growth of the piezoelectric material on the CNTs, by stirring the PZT and CNT mixed solution, results in various positive effects, such as a high-quality dispersion in the polymer matrix and addition of flexoelectricity to piezoelectricity, resulting in the enhancement of the output voltage by an external mechanical force. The NGs repeatedly generate an output voltage of 0.15 V. These results present a significant step toward the application of NGs using piezoelectric nanocomposite materials.

4.
Sci Rep ; 7: 46241, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387324

RESUMO

The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30-40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures.

5.
Adv Mater ; 29(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27925317

RESUMO

New fiber-type piezoelectric nanogenerator devices consisting of radially aligned perovskite PbTiO3 nanotubes are designed for energy harvesting from arbitrary mechanical motion. The free-standing fiber-type nanogenerators generate constant amount of electric power by bending or wind motion regardless of direction, thus, extending the possibility of their practical applications.

6.
Sci Rep ; 6: 29562, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27406631

RESUMO

We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials.

7.
Adv Mater ; 26(29): 5005-11, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24847984

RESUMO

Flexoelectric control of defect formation and associated electronic function is demonstrated in ferroelectric BiFeO3 thin films. An intriguing, so far never demonstrated, effect of internal electric field (Eint ) on defect formation is explored by a means of flexoelectricity. Our study provides novel insight into defect engineering, as well as allows a pathway to design defect configuration and associated electronic function.


Assuntos
Eletricidade , Fenômenos Mecânicos , Compostos Férricos/química , Temperatura
8.
J Nanosci Nanotechnol ; 14(11): 8554-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958562

RESUMO

We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.

9.
Adv Mater ; 25(39): 5643-9, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23897638

RESUMO

Flexoelectricity can play an important role in the reversal of the self-polarization direction in epitaxial BiFeO3 thin films. The flexoelectric and interfacial effects compete with each other to determine the self-polarization state. In Region I, the self-polarization is downward because the interfacial effect is more dominant than the flexoelectric effect. In Region II, the self-polarization is upward, because the flexoelectric effect becomes more dominant than the interfacial effect.

10.
J Nanosci Nanotechnol ; 11(2): 1346-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456185

RESUMO

We investigate the nanopore changes near domain boundaries during the nanopore growth in porous anodic alumina (PAA) to understand the domain growth behavior with the anodization time. In order to observe the pore changes with the time, we analyze cleavage planes of PAA according to the nanopore length using a field emission scanning electron microscopy. The domain growth can be explained with three kinds of nanopore changes observed near domain boundaries: a change of pore diameter, a pore-branching, and a pore-movement.

11.
Nano Lett ; 8(7): 1813-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18540654

RESUMO

We report the first unambiguous ferroelectric properties of ultra-thin-walled Pb(Zr,Ti)O 3 (PZT) nanotube arrays, each with 5 nm thick walls and outer diameters of 50 nm. Ferroelectric switching behavior with well-saturated hysteresis loops is observed in these ferroelectric PZT nanotubes with P r and E c values of about 1.5 microC cm (-2) and 86 kV cm (-1), respectively, for a maximum applied electric field of 400 kV cm (-1). These PZT nanotube arrays (10 (12) nanotubes cm (-2)) might provide a competitive approach toward the development of three-dimensional capacitors for the terabyte ferroelectric random access memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...