Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(4): 6169-6176, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656557

RESUMO

Historically, both p- and n-type PbTe show extraordinary thermoelectric figures of merit within 300-600 °C for power generation applications. A full realization of the potential of these high-performance thermoelectric materials on a device level largely depends on the electrical and thermal contacts with the metal electrodes. Chemical inertness with a slow diffusion could be an important criterion for the selection of metal electrodes. In this work, the diffusion of the total 12 potential metal electrodes in PbTe diffusion couples are focused on and sorted, suggesting the superiority of Co as an electrode for its low diffusion coefficient and interfacial contact resistivity, inertial to PbTe and compatibility in temperature for sintering. The strategy used in this work is believed to be applicable to the selection of electrodes for other thermoelectric materials.

2.
Nat Commun ; 13(1): 237, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017505

RESUMO

Low-grade heat accounts for >50% of the total dissipated heat sources in industries. An efficient recovery of low-grade heat into useful electricity not only reduces the consumption of fossil-fuels but also releases the subsequential environmental-crisis. Thermoelectricity offers an ideal solution, yet low-temperature efficient materials have continuously been limited to Bi2Te3-alloys since the discovery in 1950s. Scarcity of tellurium and the strong property anisotropy cause high-cost in both raw-materials and synthesis/processing. Here we demonstrate cheap polycrystalline antimonides for even more efficient thermoelectric waste-heat recovery within 600 K than conventional tellurides. This is enabled by a design of Ni/Fe/Mg3SbBi and Ni/Sb/CdSb contacts for both a prevention of chemical diffusion and a low interfacial resistivity, realizing a record and stable module efficiency at a temperature difference of 270 K. In addition, the raw-material cost  to the output power ratio in this work is reduced to be only 1/15 of that of conventional Bi2Te3-modules.

3.
Small ; 17(25): e2100915, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34032385

RESUMO

Manipulations of carrier and phonon scatterings through hierarchical structures have been proved to be effective in improving thermoelectric performance. Previous efforts in GeTe-based materials mainly focus on simultaneously optimizing the carrier concentration and band structure. In this work, a synergistic strategy to tailor thermal and electrical transport properties of GeTe by combination with the scattering effects from both Ge vacancies and other defects is reported. The addition of Fe in GeTe-based compounds introduces the secondary phase of FeGe2 , synchronously increasing the concentration of Ge vacancies and arousing more Ge planar defects. These hierarchical defects contribute to a large scattering factor, leading to a significant enhancement of Seebeck coefficient and further a splendid power factor. Meanwhile, benefiting from the reinforced phonon scatterings by multiscale hierarchical structures, an extremely low lattice thermal conductivity is successfully achieved. With simultaneously optimized electrical and thermal transport properties, a maximum figure of merit, zT, value of 2.1 at 750 K and an average zT value of 1.5 in 400-800 K are realized in Ge0.875 Sb0.08 Te/1.5%FeGe2 . This work demonstrates that manipulation of hierarchical defects is an effective strategy to optimize the thermoelectric properties.

4.
Sci Adv ; 7(19)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33962945

RESUMO

GeTe alloys have recently attracted wide attention as efficient thermoelectrics. In this work, a single-leg thermoelectric device with a conversion efficiency as high as 14% under a temperature gradient of 440 K was fabricated on the basis of GeTe-Cu2Te-PbSe alloys, which show a peak thermoelectric figure of merit (zT) > 2.5 and an average zT of 1.8 within working temperatures. The high performance of the material is electronically attributed to the carrier concentration optimization and thermally due to the strengthened phonon scattering, the effects of which all originate from the defects in the alloys. A design of Ag/SnTe/GeTe contact successfully enables both a prevention of chemical diffusion and an interfacial contact resistivity of 8 microhm·cm2 for the realization of highly efficient devices with a good service stability/durability. Not only the material's high performance but also the device's high efficiency demonstrated the extraordinariness of GeTe alloys for efficient thermoelectric waste-heat recovery.

5.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188018

RESUMO

Development of thermoelectrics usually involves trial-and-error investigations, including time-consuming synthesis and measurements. Here, we identify the electronic quality factor BE for determining the maximum thermoelectric power factor, which can be conveniently estimated by a single measurement of Seebeck coefficient and electrical conductivity of only one sample, not necessarily optimized, at an arbitrary temperature. We demonstrate that thousands of experimental measurements in dozens of materials can all be described by a universal curve and a single material parameter BE for each class of materials. Furthermore, any deviation in BE with temperature or doping indicated new effects such as band convergence or additional scattering. This makes BE a powerful tool for evaluating and guiding the development of thermoelectrics. We demonstrate the power of BE to show both p-type GeTe alloys and n-type Mg3SbBi alloys as highly competitive materials, at near room temperature, to state-of-the-art Bi2Te3 alloys used in nearly all commercial applications.

6.
Adv Sci (Weinh) ; 6(16): 1802286, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453051

RESUMO

Over the past years, thermoelectric Mg3Sb2 alloys particularly in n-type conduction, have attracted increasing attentions for thermoelectric applications, due to the multivalley conduction band, abundance of constituents, and less toxicity. However, the high vapor pressure, causticity of Mg, and the high melting point of Mg3Sb2 tend to cause the inclusion in the materials of boundary phases and defects that affect the transport properties. In this work, a utilization of tantalum-sealing for melting enables n-type Mg3Sb2 alloys to show a substantially higher mobility than ever reported, which can be attributed to the purification of phases and to the coarse grains. Importantly, the inherently high mobility successfully enables the thermoelectric figure of merit in optimal compositions to be highly competitive to that of commercially available n-type Bi2Te3 alloys and to be higher than that of other known n-type thermoelectrics at 300-500 K. This work reveals Mg3Sb2 alloys as a top candidate for near-room-temperature thermoelectric applications.

7.
ACS Appl Mater Interfaces ; 11(34): 30756-30762, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31386339

RESUMO

Rhombohedral GeTe can be approximated as the directional distortion of the cubic GeTe along [111]. Such a symmetry-breaking of the crystal structure results in an opposite arrangement in energy of the L and Σ valence bands, and a split of them into 3L+1Z and 6Σ+6η, respectively. This enables a manipulation of the overall band degeneracy for thermoelectric enhancements through a precise control of the degree of crystal structure deviating from a cubic structure for the alignment of the split bands. Here, we show the effect of AgBiSe2-alloying on the crystal structure as well as thermoelectric transport properties of rhombohedral GeTe. AgBiSe2-alloying is found to not only finely manipulate the crystal structure for band convergence and thereby an increased band degeneracy, but also flatten the valence band for an increased band effective mass. Both of them result in an increased density of state effective mass and therefore an enhanced Seebeck coefficient along with a decreased mobility. Moreover, a remarkably reduced lattice thermal conductivity of ∼0.4 W/m-K is obtained due to the introduced additional point defect phonon scattering and bond softening by the alloying. With the help of Bi-doping at the Ge site for further optimizing the carrier concentration, thermoelectric figure of merit, zT, of ∼1.7 and average zTave of ∼0.9 are achieved in 5% AgBiSe2-alloyed rhombohedral GeTe, which demonstrates this material as a promising candidate for low-temperature thermoelectric applications.

8.
ACS Appl Mater Interfaces ; 11(30): 27098-27103, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283881

RESUMO

Binary group II-V antimonides, especially Zn4Sb3 and ZnSb, have shown great potential for thermoelectric applications because of the intrinsic low lattice thermal conductivity. Another member from this family, CdSb, has also been revealed to show a promising thermoelectric performance, particularly in its single crystal form. This work focuses on the thermoelectric transport properties of polycrystalline CdSb and Cd1-xZnxSb alloys with various doping. It is shown that Ag doping at the cation site enables the highest hole concentration. The obtained broad range of carrier concentrations ensures a systematical assessment on the transport properties of CdSb-based materials and on its potential for thermoelectric applications, according to an effective single parabolic band (SPB) approximation with acoustic phonon scattering. This work not only details the fundamental parameters that determine the thermoelectric performance but also demonstrates CdSb alloys as highly efficient thermoelectrics.

9.
ACS Appl Mater Interfaces ; 10(46): 39904-39911, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30375223

RESUMO

Band convergence has been proven as an effective approach for enhancing thermoelectric performance, particularly in p-type IV-VI semiconductors, where the superior electronic performance originates from the contributions of both L and Σ band valleys when they converge to have a small energy offset. When alloying with cubic IV-VI semiconductors, CdTe has been found as an effective agent for achieving such a band convergence. This work focuses on the effect of CdTe-alloying on the thermoelectric transport properties of GeTe, where the carrier concentration can be tuned in a broad range through Bi-doping on Ge site. It is found that CdTe-alloying indeed helps to converge the valence bands of GeTe in both low- T rhombohedral and high- T cubic phases for an increase in Seebeck coefficient with a decrease in mobility. In addition, the strong phonon scattering due to the existence of high-concentration Cd/Ge and Bi/Ge substitutions leads the lattice thermal conductivity to be reduced to as low as 0.6 W/(m-K). These lead to an effectively increased average thermoelectric figure of merit ( ZTave ∼ 1.2) at 300-800 K, which is higher than that of many IV-VI materials with CdTe-alloying or alternatively with MnTe-, MgTe-, SrTe-, EuTe-, or YbTe-alloying for a similar band convergence effect.

10.
J Am Chem Soc ; 140(47): 16190-16197, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30360620

RESUMO

GeTe experiences phase transition between cubic and rhombohedral through distortion along the [111] direction. Cubic GeTe shares the similarity of a two-valence-band structure (high-energy L and low-energy Σ bands) with other cubic IV-VI semiconductors such as PbTe, SnTe, and PbSe, and all show a high thermoelectric performance due to a high band degeneracy. Very recently, the two valence bands were found to switch in energy in rhombohedral GeTe and to be split due to symmetry-breaking of the crystal structure. This enables the overall band degeneracy to be manipulated either by the control of symmetry-induced degeneracy or by the design of energy-aligned orbital degeneracy. Here, we show Sb-doping for optimizing carrier concentration and manipulating the degree of rhombohedral lattice distortion to maximize the band degeneracy and then electronic performance. In addition, Sb-doping significantly promotes the solubility of PbTe, enhancing the scattering of phonons by Ge/Pb substitutional defects for minimizing the lattice thermal conductivity. This successfully realizes a superior thermoelectric figure of merit, zT of >2 in both rhombohedral and cubic GeTe, demonstrating these alloys as top candidates for thermoelectric applications at T < 800 K. This work further sheds light on the importance of crystal structure symmetry manipulation for advancing thermoelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...