Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1050143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846779

RESUMO

Introduction: The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. Methods: In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. Results and discussion: All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla CMY2-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.

2.
BMC Microbiol ; 21(1): 94, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781204

RESUMO

BACKGROUND: Food-producing animals and their products are considered a source for human acquisition of antimicrobial resistant (AMR) bacteria, and poultry are suggested to be a reservoir for Escherichia coli resistant to extended-spectrum cephalosporins (ESC), a group of antimicrobials used to treat community-onset urinary tract infections in humans. However, the zoonotic potential of ESC-resistant E. coli from poultry and their role as extraintestinal pathogens, including uropathogens, have been debated. The aim of this study was to characterize ESC-resistant E. coli isolated from domestically produced retail chicken meat regarding their population genetic structure, the presence of virulence-associated geno- and phenotypes as well as their carriage of antimicrobial resistance genes, in order to evaluate their uropathogenic potential. RESULTS: A collection of 141 ESC-resistant E. coli isolates from retail chicken in the Norwegian monitoring program for antimicrobial resistance in bacteria from food, feed and animals (NORM-VET) in 2012, 2014 and 2016 (n = 141) were whole genome sequenced and analyzed. The 141 isolates, all containing the beta-lactamase encoding gene blaCMY-2, were genetically diverse, grouping into 19 different sequence types (STs), and temporal variations in the distribution of STs were observed. Generally, a limited number of virulence-associated genes were identified in the isolates. Eighteen isolates were selected for further analysis of uropathogen-associated virulence traits including expression of type 1 fimbriae, motility, ability to form biofilm, serum resistance, adhesion- and invasion of eukaryotic cells and colicin production. These isolates demonstrated a high diversity in virulence-associated phenotypes suggesting that the uropathogenicity of ESC-resistant E. coli from chicken meat is correspondingly highly variable. For some isolates, there was a discrepancy between the presence of virulence-associated genes and corresponding expected phenotype, suggesting that mutations or regulatory mechanisms could influence their pathogenic potential. CONCLUSION: Our results indicate that the ESC-resistant E. coli from chicken meat have a low uropathogenic potential to humans, which is important knowledge for improvement of future risk assessments of AMR in the food chains.


Assuntos
Resistência às Cefalosporinas , Escherichia coli/classificação , Carne/microbiologia , Animais , Resistência às Cefalosporinas/genética , Galinhas , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/patogenicidade , Variação Genética , Humanos , Infecções Urinárias/microbiologia
3.
Microb Drug Resist ; 26(7): 842-849, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31951514

RESUMO

The present work addresses the effect of excess levels of ZnCl2 and CuSO4 in the growth medium on the conjugative transfer of plasmids carrying the antibiotic resistance gene blaCMY-2 from extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. Norwegian poultry are not treated prophylactically with antibiotics, but still, ESBL-producing E. coli are found in the chicken populations. Chickens receive higher amounts of Zn and Cu than their biological need, and several metals have been shown to act as drivers of antimicrobial resistance. In the present study, ESBL-producing E. coli strains collected from retail chicken meat were mated in broth containing various concentrations of ZnCl2 and CuSO4. Manual counting of transconjugants showed that ZnCl2 and CuSO4 reduced the conjugation frequency between E. coli strains in a concentration-dependent manner. Quantitative real-time PCR analyses showed that the presence of ZnCl2 and CuSO4 in the growth media reduced expression of the conjugation genes traB and nikB. By propagating monocultures over several generations, it was found that the blaCMY-2 plasmids remained stable in the recipient strains. Together the results show that exposure of ESBL-producing E. coli to Zn and Cu reduce horizontal transfer of the blaCMY-2 resistance plasmid by reducing expression of genes involved in conjugation in the plasmid donor strain.


Assuntos
Cloretos/farmacologia , Sulfato de Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Compostos de Zinco/farmacologia , beta-Lactamases/efeitos dos fármacos , Animais , Proteínas de Bactérias , Galinhas , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Plasmídeos/genética , Doenças das Aves Domésticas , Reação em Cadeia da Polimerase em Tempo Real , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...