Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 634: 1346-1351, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710634

RESUMO

Bisphenol A (BPA) is an endocrine disruptor compound that is continuously released into the environment and is barely degraded in wastewater treatment plants. A previous study showed that free Pleurotus ostreatus laccase is efficient in degrading BPA producing less toxic metabolites. In the present study, this laccase was successfully immobilized onto MANAE-agarose, improving its efficiency in degrading BPA and its thermal and storage stabilities. In addition to this, the immobilized enzyme retained >90% of its initial capability to degrade BPA after 15cycles of reuse. P. ostreatus laccase immobilized onto MANAE-agarose could be an economical alternative for large scale degradation of BPA in aqueous systems.


Assuntos
Compostos Benzidrílicos/metabolismo , Disruptores Endócrinos/metabolismo , Lacase/metabolismo , Fenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Compostos Benzidrílicos/análise , Biodegradação Ambiental , Disruptores Endócrinos/análise , Enzimas Imobilizadas , Fenóis/análise , Pleurotus , Sefarose , Águas Residuárias , Poluentes Químicos da Água/análise
2.
Food Funct ; 7(3): 1483-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26883936

RESUMO

Citrus aurantium (bitter orange) extracts have been used in products for weight management and sports performance. These extracts contain large amounts of p-synephrine and much smaller amounts of p-octopamine. Both protoalkaloids exert lipolytic and glycogenolytic activities at similar concentrations. The biotransformation of p-synephrine and p-octopamine is not as well-known as those of other adrenergic amines. For this reason transformation of these amines was investigated in the isolated perfused liver. Special attention was devoted to the single pass extraction of each compound as well as to the kinetics of uptake. The assay of the amines in the outflowing perfusate was done by means of high performance liquid chromatography (HPLC). The single pass extraction of p-synephrine was higher than 90% at a portal concentration of 10 µM. It declined with the concentration, but was still around 30% at the concentration of 500 µM. At low concentrations (10-50 µM) the decreasing sequence of single pass extractions was p-synephrine > p-octopamine ≈ epinephrine > norepinephrine. Rates of uptake versus p-synephrine concentration resulted in a Michaelis-Menten type of relationship, with a KM value of 290.7 ± 32.1 µM and a Vmax of 0.762 ± 0.042 µmol min(-1) g(-1). The rates of uptake of p-octopamine did not present clear saturation and could be approximated by a linear relationship with a first order rate constant of 1.5 min(-1). The rapid hepatic transformation of p-synephrine and p-octopamine means that their concentration in the portal vein exceeds that in the systemic circulation during absorption. Their metabolic effects will, thus, be exerted predominantly in the liver.


Assuntos
Citrus/metabolismo , Fígado/metabolismo , Boca/metabolismo , Octopamina/metabolismo , Extratos Vegetais/metabolismo , Sinefrina/metabolismo , Animais , Biotransformação , Cinética , Fígado/química , Masculino , Boca/química , Octopamina/química , Extratos Vegetais/química , Ratos , Ratos Wistar , Sinefrina/química
3.
Plant Signal Behav ; 10(2): e989059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826260

RESUMO

The effects of the allelochemical benzoxazolin-2-(3H)-one (BOA) were evaluated on growth, lignin content and its monomers p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) in roots, stems and leaves of soybean. BOA decreased the lengths and fresh weights of roots and stems, and the fresh weights and areas of leaves. Reductions in the growth were accompanied by enhanced lignin content in all tissues. In roots, the allelochemical increased the content of H, G and S monomers as well as the overall amount of lignin (referred to as the sum of H+G+S), but did not alter the S/G ratio. In stems and leaves, BOA increased the H, G, S and H+G+S contents while decreasing the S/G ratio. In brief, BOA-induced inhibition of soybean may be due to excessive production of monomers that increase the degree of polymerization of lignin, limit cell expansion, solidify the cell wall and restrict plant growth.


Assuntos
Benzoxazóis/farmacologia , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Lignina/metabolismo , Biomassa , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Glycine max/efeitos dos fármacos
4.
PLoS One ; 8(12): e80542, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312480

RESUMO

Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.


Assuntos
Parede Celular/metabolismo , Cinamatos , Glycine max/crescimento & desenvolvimento , Lignina/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Cinamatos/metabolismo , Cinamatos/farmacologia , Raízes de Plantas/citologia , Glycine max/citologia
5.
J Plant Physiol ; 168(14): 1627-33, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21489652

RESUMO

The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid inhibited root growth, decreased the PAL activity and H(2)O(2) content and increased the soluble and cell wall-bound POD activities. The p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monomers and total lignin (H+G+S) increased in the caffeic acid-exposed roots. When applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), caffeic acid equalized the inhibitory effect of PIP, whereas the application of methylene dioxocinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL) plus caffeic acid decreased lignin production. These results indicate that exogenously applied caffeic acid can be channeled into the phenylpropanoid pathway via the 4CL reaction, resulting in an increase of lignin monomers that solidify the cell wall and inhibit root growth.


Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Glycine max/efeitos dos fármacos , Lignina/metabolismo , Benzoatos/farmacologia , Parede Celular/enzimologia , Parede Celular/metabolismo , Cinamatos/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Ácidos Cumáricos/farmacologia , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Lignina/análise , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Transcinamato 4-Mono-Oxigenase/antagonistas & inibidores , Transcinamato 4-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...